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Announcements

• Homework 2 due NOW (a few minutes ago!!!)

• Homework 3 out today (due April 29th) 

• Today

– Finish AVL Trees

– Start Priority Queues
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The AVL Tree Data Structure

An AVL tree is a self-balancing binary search tree.

Structural properties

1. Binary tree property (same as BST)

2. Order property (same as for BST)

3. Balance property:

balance of every node is between -1 and 1

Need to keep track of height of every node and maintain 

balance as we perform operations.
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AVL Trees: Insert

• Insert as in a BST (add a leaf in appropriate position)

• Check back up path for imbalance, which will be 1 of 4 cases:

– Unbalanced node’s left-left grandchild is too tall

– Unbalanced node’s left-right grandchild is too tall

– Unbalanced node’s right-left grandchild is too tall

– Unbalanced node’s right-right grandchild is too tall

• Only one case occurs because tree was balanced before insert

• After the appropriate single or double rotation, the smallest-

unbalanced subtree has the same height as before the insertion

– So all ancestors are now balanced
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AVL Trees: Single rotation

• Single rotation:

– The basic operation we’ll use to rebalance an AVL Tree

– Move child of unbalanced node into parent position

– Parent becomes the “other” child (always okay in a BST!)

– Other sub-trees move in only way BST allows

Spring 2015 5CSE 373



The general left-left case
• Insertion into left-left grandchild causes an imbalance at node a

– Move child of unbalanced node into parent position

– Parent becomes the “other” child

– Other sub-trees move in the only way BST allows: 

• using BST facts: X < b < Y < a < Z
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• A single rotation restores balance at the node

– To same height as before insertion, so ancestors now balanced
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The general right-right case

• Mirror image to left-left case, so you rotate the other way

– Exact same concept, but need different code

Spring 2015 7CSE 373

a

ZY

X

h

h
h+1

h+3

b

h+2 b

Z

Y

a

X

h h

h+1

h+1

h+2



Two cases to go

Unfortunately, single rotations are not enough for insertions in the 

left-right subtree or the right-left subtree

Simple example:  insert(1), insert(6), insert(3)

– First wrong idea: single rotation like we did for left-left
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Two cases to go

Unfortunately, single rotations are not enough for insertions in the 

left-right subtree or the right-left subtree

Simple example:  insert(1), insert(6), insert(3)

– Second wrong idea: single rotation on the child of the 

unbalanced node
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Sometimes two wrongs make a right 

• First idea violated the order property

• Second idea didn’t fix balance

• But if we do both single rotations, starting with the second, it 

works!  (And not just for this example.)

• Double rotation: 

1. Rotate problematic child and grandchild

2. Then rotate between self and new child
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The general right-left case
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Comments

• Like in the left-left and right-right cases, the height of the subtree

after rebalancing is the same as before the insert

– So no ancestor in the tree will need rebalancing

• Does not have to be implemented as two rotations; can just do:
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• Easier to remember than you may think:

Move c to grandparent’s position

Put a, b, X, U, V, and Z in the only legal positions for a BST



The last case: left-right

• Mirror image of right-left

– Again, no new concepts, only new code to write
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AVL Trees: efficiency

• Worst-case complexity of find: O(log n)

– Tree is balanced

• Worst-case complexity of insert: O(log n)

– Tree starts balanced

– A rotation is O(1) and there’s an O(log n) path to root

– Tree ends balanced

• Worst-case complexity of buildTree: O(n log n)

Takes some more rotation action to handle delete…
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Pros and Cons of AVL Trees
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Arguments for AVL trees:

1. All operations logarithmic worst-case because trees are always

balanced

2. Height balancing adds no more than a constant factor to the speed 
of insert and delete

Arguments against AVL trees:

1. Difficult to program & debug [but done once in a library!]

2. More space for height field

3. Asymptotically faster but rebalancing takes a little time

4. If amortized (later, I promise) logarithmic time is enough, use splay 

trees (in the text)



Done with AVL Trees (….phew!)

next up…

Priority Queues ADT

(Homework 3 )
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A new ADT: Priority Queue

• A priority queue holds compare-able data

– Like dictionaries, we need to compare items

• Given x and y, is x less than, equal to, or greater than y

• Meaning of the ordering can depend on your data

– Integers are comparable, so will use them in examples

• But the priority queue ADT is much more general

• Typically two fields, the priority and the data
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Priorities

• Each item has a “priority”

– In our examples, the lesser item is the one with the greater priority

– So “priority 1” is more important than “priority 4”

– (Just a convention, think “first is best”)

• Operations: 

– insert

– deleteMin

– is_empty

• Key property: deleteMin returns and deletes the item with greatest 

priority (lowest priority value)

– Can resolve ties arbitrarily
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insert deleteMin

6        2

15  23

12   18

45   3    7



Example

insert x1 with priority 5

insert x2 with priority 3

insert x3 with priority 4

a = deleteMin // x2

b = deleteMin // x3

insert x4 with priority 2

insert x5 with priority 6

c = deleteMin // x4

d = deleteMin // x1

• Analogy: insert is like enqueue, deleteMin is like dequeue

– But the whole point is to use priorities instead of FIFO
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Applications

Like all good ADTs, the priority queue arises often

– Sometimes blatant, sometimes less obvious

• Run multiple programs in the operating system

– “critical” before “interactive” before “compute-intensive”

– Maybe let users set priority level

• Treat hospital patients in order of severity (or triage)

• Select print jobs in order of decreasing length?

• Forward network packets in order of urgency

• Select most frequent symbols for data compression 

• Sort (first insert all, then repeatedly deleteMin)

– Much like Homework 1 uses a stack to implement reverse
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Finding a good data structure

• Will show an efficient, non-obvious data structure for this ADT

– But first let’s analyze some “obvious” ideas for n data items

– All times worst-case; assume arrays “have room”

data insert algorithm / time deleteMin algorithm / time

unsorted array

unsorted linked list

sorted circular array

sorted linked list

binary search tree

AVL tree
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add at end          O(1)     search                O(n)

add at front         O(1)     search                O(n)

search / shift       O(n)        move front          O(1)

put in right place O(n)        remove at front  O(1)

put in right place O(n) leftmost              O(n)

put in right place O(log n)  leftmost       O(log n)



More on possibilities

• One more idea: if priorities are 0, 1, …, k can use an array of k lists

– insert: add to front of list at arr[priority], O(1)

– deleteMin: remove from lowest non-empty list O(k)

• We are about to see a data structure called a “binary heap”

– Another binary tree structure with specific properties

– O(log n) insert and O(log n) deleteMin worst-case

• Possible because we don’t support unneeded operations; no 

need to maintain a full sort

– Very good constant factors

– If items arrive in random order, then insert is O(1) on average

• Because 75% of nodes in bottom two rows 
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Our data structure

A binary min-heap (or just binary heap or just heap) has:

• Structure property: A complete binary tree 

• Heap property: The priority of every (non-root) node is less 

important than the priority of its parent

– Not a binary search tree
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So:

• Where is the highest-priority item?

• What is the height of a heap with n items?



Operations: basic idea

• findMin: return root.data

• deleteMin: 

1. answer = root.data

2. Move right-most node in last 

row to root to restore 

structure property

3. “Percolate down” to restore 

heap property

• insert:

1. Put new node in next position 

on bottom row to restore 

structure property

2. “Percolate up” to restore 

heap property
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Overall strategy:

• Preserve structure property

• Break and restore heap 

property



25

DeleteMin

34

9857

106911

Delete (and later return) value at root node
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DeleteMin: Keep the Structure Property

• We now have a “hole” at the root

– Need to fill the hole with another value

• Keep structure property: When we are done, 

the tree will have one less node and must still 

be complete

• Pick the last node on the bottom row of the 

tree and move it to the “hole”
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DeleteMin: Restore the Heap Property

Percolate down: 

• Keep comparing priority of item with both children 

• If priority is less important, swap with the most important child and 

go down one level

• Done if both children are less important than the item or we’ve 

reached a leaf node
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Why is this correct?  

What is the run time?
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DeleteMin: Run Time Analysis

• Run time is O(height of heap)

• A heap is a complete binary tree

• Height of a complete binary tree of n nodes?

– height =  log2(n) 

• Run time of deleteMin is O(log n)
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Insert

• Add a value to the tree

• Afterwards, structure and heap 

properties must still be correct
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Insert: Maintain the Structure Property

• There is only one valid tree shape after 

we add one more node

• So put our new data there and then 

focus on restoring the heap property
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Insert: Restore the heap property
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Percolate up:

• Put new data in new location

• If parent is less important, swap with parent, and continue

• Done if parent is more important than item or reached root
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What is the running time?
Like deleteMin, worst-case time proportional to tree height: O(log n)



Summary

• Priority Queue ADT: 

– insert comparable object, 

– deleteMin

• Binary heap data structure: 

– Complete binary tree 

– Each node has less important 

priority value than its parent

• insert and deleteMin operations = O(height-of-tree)=O(log n)

– insert:        put at new last position in tree and percolate-up

– deleteMin: remove root, put last element at root and  

percolate-down
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insert deleteMin
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