
CSE373: Data Structures & Algorithms

Lecture 8: AVL Trees and Priority Queues

Catie Baker

Spring 2015

Announcements

• Homework 2 due NOW (a few minutes ago!!!)

• Homework 3 out today (due April 29th) 

• Today

– Finish AVL Trees

– Start Priority Queues

Spring 2015 2CSE 373

3

The AVL Tree Data Structure

An AVL tree is a self-balancing binary search tree.

Structural properties

1. Binary tree property (same as BST)

2. Order property (same as for BST)

3. Balance property:

balance of every node is between -1 and 1

Need to keep track of height of every node and maintain

balance as we perform operations.

Spring 2015 CSE 373

AVL Trees: Insert

• Insert as in a BST (add a leaf in appropriate position)

• Check back up path for imbalance, which will be 1 of 4 cases:

– Unbalanced node’s left-left grandchild is too tall

– Unbalanced node’s left-right grandchild is too tall

– Unbalanced node’s right-left grandchild is too tall

– Unbalanced node’s right-right grandchild is too tall

• Only one case occurs because tree was balanced before insert

• After the appropriate single or double rotation, the smallest-

unbalanced subtree has the same height as before the insertion

– So all ancestors are now balanced

Spring 2015 4CSE 373

AVL Trees: Single rotation

• Single rotation:

– The basic operation we’ll use to rebalance an AVL Tree

– Move child of unbalanced node into parent position

– Parent becomes the “other” child (always okay in a BST!)

– Other sub-trees move in only way BST allows

Spring 2015 5CSE 373

The general left-left case
• Insertion into left-left grandchild causes an imbalance at node a

– Move child of unbalanced node into parent position

– Parent becomes the “other” child

– Other sub-trees move in the only way BST allows:

• using BST facts: X < b < Y < a < Z

Spring 2015 6CSE 373

• A single rotation restores balance at the node

– To same height as before insertion, so ancestors now balanced

a

Z

Y

b

X

h+1 h

h

h+2

h+3 b

ZY

a
h+1 h

h

h+1

h+2

X

The general right-right case

• Mirror image to left-left case, so you rotate the other way

– Exact same concept, but need different code

Spring 2015 7CSE 373

a

ZY

X

h

h
h+1

h+3

b

h+2 b

Z

Y

a

X

h h

h+1

h+1

h+2

Two cases to go

Unfortunately, single rotations are not enough for insertions in the

left-right subtree or the right-left subtree

Simple example: insert(1), insert(6), insert(3)

– First wrong idea: single rotation like we did for left-left

Spring 2015 8CSE 373

3

6

1

0

1

2

6

1 3

1

0 0

Violates order

property!

Two cases to go

Unfortunately, single rotations are not enough for insertions in the

left-right subtree or the right-left subtree

Simple example: insert(1), insert(6), insert(3)

– Second wrong idea: single rotation on the child of the

unbalanced node

Spring 2015 9CSE 373

3

6

1

0

1

2

6

3

1

0

1

2

Still unbalanced!

Sometimes two wrongs make a right 

• First idea violated the order property

• Second idea didn’t fix balance

• But if we do both single rotations, starting with the second, it

works! (And not just for this example.)

• Double rotation:

1. Rotate problematic child and grandchild

2. Then rotate between self and new child

Spring 2015 10CSE 373

3

6

1

0

1

2

6

3

1

0

1

2

1

00
1

3

6

The general right-left case

Spring 2015 11CSE 373

a

X

b

c
h-1

h

h

h

V
U

h+1

h+2

h+3

Z

a

X

c

h-1

h+1h

h

V
U

h+2

h+3

Z

b

h

c

X

h-1

h+1

h

h+1

VU

h+2

Z

b

h

a

h

Comments

• Like in the left-left and right-right cases, the height of the subtree

after rebalancing is the same as before the insert

– So no ancestor in the tree will need rebalancing

• Does not have to be implemented as two rotations; can just do:

Spring 2015 12CSE 373

a

X

b

c
h-1

h

h

h

V
U

h+1

h+2

h+3

Z

c

X

h-1

h+1

h

h+1

VU

h+2

Z

b

h

a

h

• Easier to remember than you may think:

Move c to grandparent’s position

Put a, b, X, U, V, and Z in the only legal positions for a BST

The last case: left-right

• Mirror image of right-left

– Again, no new concepts, only new code to write

Spring 2015 13CSE 373

a

h-1

h

h
h

VU

h+1

h+2

h+3

Z

X

b

c

c

X

h-1

h+1

h

h+1

VU

h+2

Z

a

h

b

h

AVL Trees: efficiency

• Worst-case complexity of find: O(log n)

– Tree is balanced

• Worst-case complexity of insert: O(log n)

– Tree starts balanced

– A rotation is O(1) and there’s an O(log n) path to root

– Tree ends balanced

• Worst-case complexity of buildTree: O(n log n)

Takes some more rotation action to handle delete…

Spring 2015 14CSE 373

Pros and Cons of AVL Trees

Spring 2015 CSE 373 15

Arguments for AVL trees:

1. All operations logarithmic worst-case because trees are always

balanced

2. Height balancing adds no more than a constant factor to the speed
of insert and delete

Arguments against AVL trees:

1. Difficult to program & debug [but done once in a library!]

2. More space for height field

3. Asymptotically faster but rebalancing takes a little time

4. If amortized (later, I promise) logarithmic time is enough, use splay

trees (in the text)

Done with AVL Trees (….phew!)

next up…

Priority Queues ADT

(Homework 3 )

Spring 2015 CSE 373 16

A new ADT: Priority Queue

• A priority queue holds compare-able data

– Like dictionaries, we need to compare items

• Given x and y, is x less than, equal to, or greater than y

• Meaning of the ordering can depend on your data

– Integers are comparable, so will use them in examples

• But the priority queue ADT is much more general

• Typically two fields, the priority and the data

Spring 2015 17CSE 373

Priorities

• Each item has a “priority”

– In our examples, the lesser item is the one with the greater priority

– So “priority 1” is more important than “priority 4”

– (Just a convention, think “first is best”)

• Operations:

– insert

– deleteMin

– is_empty

• Key property: deleteMin returns and deletes the item with greatest

priority (lowest priority value)

– Can resolve ties arbitrarily

Spring 2015 18CSE 373

insert deleteMin

6 2

15 23

12 18

45 3 7

Example

insert x1 with priority 5

insert x2 with priority 3

insert x3 with priority 4

a = deleteMin // x2

b = deleteMin // x3

insert x4 with priority 2

insert x5 with priority 6

c = deleteMin // x4

d = deleteMin // x1

• Analogy: insert is like enqueue, deleteMin is like dequeue

– But the whole point is to use priorities instead of FIFO

Spring 2015 19CSE 373

Applications

Like all good ADTs, the priority queue arises often

– Sometimes blatant, sometimes less obvious

• Run multiple programs in the operating system

– “critical” before “interactive” before “compute-intensive”

– Maybe let users set priority level

• Treat hospital patients in order of severity (or triage)

• Select print jobs in order of decreasing length?

• Forward network packets in order of urgency

• Select most frequent symbols for data compression

• Sort (first insert all, then repeatedly deleteMin)

– Much like Homework 1 uses a stack to implement reverse

Spring 2015 20CSE 373

Finding a good data structure

• Will show an efficient, non-obvious data structure for this ADT

– But first let’s analyze some “obvious” ideas for n data items

– All times worst-case; assume arrays “have room”

data insert algorithm / time deleteMin algorithm / time

unsorted array

unsorted linked list

sorted circular array

sorted linked list

binary search tree

AVL tree

Spring 2015 21CSE 373

add at end O(1) search O(n)

add at front O(1) search O(n)

search / shift O(n) move front O(1)

put in right place O(n) remove at front O(1)

put in right place O(n) leftmost O(n)

put in right place O(log n) leftmost O(log n)

More on possibilities

• One more idea: if priorities are 0, 1, …, k can use an array of k lists

– insert: add to front of list at arr[priority], O(1)

– deleteMin: remove from lowest non-empty list O(k)

• We are about to see a data structure called a “binary heap”

– Another binary tree structure with specific properties

– O(log n) insert and O(log n) deleteMin worst-case

• Possible because we don’t support unneeded operations; no

need to maintain a full sort

– Very good constant factors

– If items arrive in random order, then insert is O(1) on average

• Because 75% of nodes in bottom two rows

Spring 2015 22CSE 373

Our data structure

A binary min-heap (or just binary heap or just heap) has:

• Structure property: A complete binary tree

• Heap property: The priority of every (non-root) node is less

important than the priority of its parent

– Not a binary search tree

Spring 2015 23CSE 373

1530

8020

10not a heap

996040

8020

10

50 700

85

a heap

So:

• Where is the highest-priority item?

• What is the height of a heap with n items?

Operations: basic idea

• findMin: return root.data

• deleteMin:

1. answer = root.data

2. Move right-most node in last

row to root to restore

structure property

3. “Percolate down” to restore

heap property

• insert:

1. Put new node in next position

on bottom row to restore

structure property

2. “Percolate up” to restore

heap property

Spring 2015 24CSE 373

996040

8020

10

50 700

85

Overall strategy:

• Preserve structure property

• Break and restore heap

property

25

DeleteMin

34

9857

106911

Delete (and later return) value at root node

Spring 2015 CSE 373

1

26

DeleteMin: Keep the Structure Property

• We now have a “hole” at the root

– Need to fill the hole with another value

• Keep structure property: When we are done,

the tree will have one less node and must still

be complete

• Pick the last node on the bottom row of the

tree and move it to the “hole”

34

9857

106911

34

9857

106911

Spring 2015 CSE 373

27

DeleteMin: Restore the Heap Property

Percolate down:

• Keep comparing priority of item with both children

• If priority is less important, swap with the most important child and

go down one level

• Done if both children are less important than the item or we’ve

reached a leaf node

34

9857

10

6911

4

9857

10

6911

3

84

91057

6911

3
?

?

Spring 2015 CSE 373

Why is this correct?

What is the run time?

28

DeleteMin: Run Time Analysis

• Run time is O(height of heap)

• A heap is a complete binary tree

• Height of a complete binary tree of n nodes?

– height =  log2(n) 

• Run time of deleteMin is O(log n)

Spring 2015 CSE 373

29

Insert

• Add a value to the tree

• Afterwards, structure and heap

properties must still be correct

84

91057

6911

1

2

Spring 2015
CSE 373

30

Insert: Maintain the Structure Property

• There is only one valid tree shape after

we add one more node

• So put our new data there and then

focus on restoring the heap property
84

91057

6911

1

2

Spring 2015 CSE 373

31

Insert: Restore the heap property

2

84

91057

6911

1

Percolate up:

• Put new data in new location

• If parent is less important, swap with parent, and continue

• Done if parent is more important than item or reached root

?

2
5

84

9107

6911

1

?

2

5

8

91047

6911

1?

Spring 2015 CSE 373

2

What is the running time?
Like deleteMin, worst-case time proportional to tree height: O(log n)

Summary

• Priority Queue ADT:

– insert comparable object,

– deleteMin

• Binary heap data structure:

– Complete binary tree

– Each node has less important

priority value than its parent

• insert and deleteMin operations = O(height-of-tree)=O(log n)

– insert: put at new last position in tree and percolate-up

– deleteMin: remove root, put last element at root and

percolate-down

Spring 2015 32CSE 373

insert deleteMin

6 2

15 23

12 18

45 3 7

996040

8020

10

700 50

85

