
CSE373: Data Structures & Algorithms

Lecture 5: Dictionary ADTs; Binary Trees

Catie Baker

Spring 2015

Today’s Outline

Announcements

- Homework 1 due TODAY at 11:59pm 

- Homework 2 out

- Due online Wednesday April 15th at the START of class

Today’s Topics

• Finish Asymptotic Analysis

• Dictionary ADT (a.k.a. Map): associate keys with values

– Extremely common

• Binary Trees

Spring 2015 2CSE 373 Algorithms and Data Structures

Summary of Asymptotic Analysis

Analysis can be about:

• The problem or the algorithm (usually algorithm)

• Time or space (usually time)

– Or power or dollars or …

• Best-, worst-, or average-case (usually worst)

• Upper-, lower-, or tight-bound (usually upper)

• The most common thing we will do is give an O upper bound to

the worst-case running time of an algorithm.

Spring 2015 3CSE 373 Algorithms and Data Structures

Big-Oh Caveats

• Asymptotic complexity focuses on behavior for large n and is

independent of any computer / coding trick

• But you can “abuse” it to be misled about trade-offs

• Example: n1/10 vs. log n

– Asymptotically n1/10 grows more quickly

– But the “cross-over” point is around 5 * 1017

– So if you have input size less than 258, prefer n1/10

• For small n, an algorithm with worse asymptotic complexity

might be faster

– If you care about performance for small n then the constant

factors can matter

Spring 2015 4CSE 373 Algorithms and Data Structures

Addendum: Timing vs. Big-Oh Summary

• Big-oh is an essential part of computer science’s mathematical

foundation

– Examine the algorithm itself, not the implementation

– Reason about (even prove) performance as a function of n

• Timing also has its place

– Compare implementations

– Focus on data sets you care about (versus worst case)

– Determine what the constant factors “really are”

Spring 2015 5CSE 373 Algorithms and Data Structures

Let’s take a breath

• So far we’ve covered

– Some simple ADTs: stacks, queues, lists

– Some math (proof by induction)

– How to analyze algorithms

– Asymptotic notation (Big-Oh)

• Coming up….

– Many more ADTs

• Starting with dictionaries

Spring 2015 6CSE 373 Algorithms and Data Structures

The Dictionary (a.k.a. Map) ADT

• Data:

– set of (key, value) pairs

– keys must be comparable

• Operations:

– insert(key,value)

– find(key)

– delete(key)

– …

Will tend to emphasize the keys;

don’t forget about the stored values

Spring 2015 7CSE 373 Algorithms and Data Structures

• catie

Catie Baker

OH: Wed 11.00-12.00

…

• rama

Rama Gokhale

OH: Fri 3.30-4.30

…

• conrad

Conrad Nied

OH: Wed 4:00-5:00

…

insert(catie, ….)

find(rama)

Rama Gokhale, …

A Modest Few Uses

Any time you want to store information according to some key and

be able to retrieve it efficiently

– Lots of programs do that!

• Search: inverted indexes, phone directories, …

• Networks: router tables

• Operating systems: page tables

• Compilers: symbol tables

• Databases: dictionaries with other nice properties

• Biology: genome maps

• …

Possibly the most widely used ADT

Spring 2015 8CSE 373 Algorithms and Data Structures

Simple implementations

For dictionary with n key/value pairs

insert find delete

• Unsorted linked-list

• Unsorted array

• Sorted linked list

• Sorted array

* Unless we need to check for duplicates

We’ll see a Binary Search Tree (BST) probably does better

but not in the worst case (unless we keep it balanced)

Spring 2015 9CSE 373 Algorithms and Data Structures

O(1)* O(n) O(n)

O(n) O(n)

O(n) O(n) O(n)

O(1)*

O(n) O(n) O(log n)

Lazy Deletion

A general technique for making delete as fast as find:

– Instead of actually removing the item just mark it deleted

Plusses:

– Simpler

– Can do removals later in batches

– If re-added soon thereafter, just unmark the deletion

Minuses:

– Extra space for the “is-it-deleted” flag

– Data structure full of deleted nodes wastes space

– May complicate other operations

Spring 2015 10CSE 373 Algorithms and Data Structures

10 12 24 30 41 42 44 45 50

        

Better dictionary data structures

There are many good data structures for (large) dictionaries

1. Binary trees

2. AVL trees

– Binary search trees with guaranteed balancing

3. B-Trees

– Also always balanced, but different and shallower

– B-Trees are not the same as Binary Trees

• B-Trees generally have large branching factor

4. Hashtables

– Not tree-like at all

Skipping: Other balanced trees (e.g., red-black, splay)

Spring 2015 11CSE 373 Algorithms and Data Structures

Tree terms (review?)

Spring 2015 12CSE 373 Algorithms and Data Structures

A

E

B

D F

C

G

IH

LJ MK N

Tree T

Root (tree)

Leaves (tree)

Children (node)

Parent (node)

Siblings (node)

Ancestors (node)

Descendents (node)

Subtree (node)

Depth (node)

Height (tree)

Degree (node)

Branching factor (tree)

More tree terms

• There are many kinds of trees

– Every binary tree is a tree

– Every list is kind of a tree (think of “next” as the one child)

• There are many kinds of binary trees

– Every binary search tree is a binary tree

– Later: A binary heap is a different kind of binary tree

• A tree can be balanced or not

– A balanced tree with n nodes has a height of O(log n)

– Different tree data structures have different “balance

conditions” to achieve this

Spring 2015 13CSE 373 Algorithms and Data Structures

Kinds of trees

Certain terms define trees with specific structure

• Binary tree: Each node has at most 2 children (branching factor 2)

• n-ary tree: Each node has at most n children (branching factor n)

• Perfect tree: Each row completely full

• Complete tree: Each row completely full except maybe the bottom

row, which is filled from left to right

Spring 2015 14CSE 373 Algorithms and Data Structures

What is the height of a perfect binary tree with n nodes?

A complete binary tree?

Binary Trees

• Binary tree: Each node has at most 2 children (branching factor 2)

• Binary tree is

– A root (with data)

– A left subtree (may be empty)

– A right subtree (may be empty)

• Representation:

A

B

D E

C

F

HG

JI

Data

right

pointer

left

pointer

• For a dictionary, data will include a
key and a value

Spring 2015 15CSE 373 Algorithms and Data Structures

Binary Tree Representation

Spring 2015 16CSE 373 Algorithms and Data Structures

Binary Trees: Some Numbers

Recall: height of a tree = longest path from root to leaf (count edges)

For binary tree of height h:

– max # of leaves:

– max # of nodes:

– min # of leaves:

– min # of nodes:

2h

2(h + 1) - 1

1

h + 1

For n nodes, we cannot do better than O(log n)

height and we want to avoid O(n) height

Spring 2015 17CSE 373 Algorithms and Data Structures

Calculating height

What is the height of a tree with root root?

Spring 2015 18CSE 373 Algorithms and Data Structures

int treeHeight(Node root) {

???

}

Calculating height

What is the height of a tree with root root?

Spring 2015 19CSE 373 Algorithms and Data Structures

int treeHeight(Node root) {

if(root == null)

return -1;

return 1 + max(treeHeight(root.left),

treeHeight(root.right));

}

Running time for tree with n nodes: O(n) – single pass over tree

Note: non-recursive is painful – need your own stack of pending

nodes; much easier to use recursion’s call stack

Tree Traversals

A traversal is an order for visiting all the nodes of a tree

• Pre-order: root, left subtree, right subtree

• In-order: left subtree, root, right subtree

• Post-order: left subtree, right subtree, root

+

*

2 4

5

(an expression tree)

Spring 2015 20CSE 373 Algorithms and Data Structures

More on traversals

void inOrderTraversal(Node t){

if(t != null) {

inOrderTraversal(t.left);

process(t.element);

inOrderTraversal(t.right);

}

}

A

B

D E

C

F G

Spring 2015 21CSE 373 Algorithms and Data Structures

= current node = processing (on the call stack)

= completed node = element has been processed

A A

A ✓

More on traversals

void inOrderTraversal(Node t){

if(t != null) {

inOrderTraversal(t.left);

process(t.element);

inOrderTraversal(t.right);

}

}

A

B

D E

C

F G

Spring 2015 22CSE 373 Algorithms and Data Structures

= current node = processing (on the call stack)

= completed node

A A

A

= current node = processing (on the call stack)

= completed node = element has been processed

A A

A ✓

More on traversals

void inOrderTraversal(Node t){

if(t != null) {

inOrderTraversal(t.left);

process(t.element);

inOrderTraversal(t.right);

}

}

A

B

D E

C

F G

Spring 2015 23CSE 373 Algorithms and Data Structures

= current node = processing (on the call stack)

= completed node

A A

A

= current node = processing (on the call stack)

= completed node = element has been processed

A A

A ✓

More on traversals

void inOrderTraversal(Node t){

if(t != null) {

inOrderTraversal(t.left);

process(t.element);

inOrderTraversal(t.right);

}

}

A

B

D E

C

F G

Spring 2015 24CSE 373 Algorithms and Data Structures

= current node = processing (on the call stack)

= completed node

A A

A

✓

= current node = processing (on the call stack)

= completed node = element has been processed

A A

A ✓

More on traversals

void inOrderTraversal(Node t){

if(t != null) {

inOrderTraversal(t.left);

process(t.element);

inOrderTraversal(t.right);

}

}

A

B

D E

C

F G

Spring 2015 25CSE 373 Algorithms and Data Structures

= current node = processing (on the call stack)

= completed node

A A

A

✓

✓

= current node = processing (on the call stack)

= completed node = element has been processed

A A

A ✓

More on traversals

void inOrderTraversal(Node t){

if(t != null) {

inOrderTraversal(t.left);

process(t.element);

inOrderTraversal(t.right);

}

}

A

B

D E

C

F G

Spring 2015 26CSE 373 Algorithms and Data Structures

= current node = processing (on the call stack)

= completed node

A A

A

= current node = processing (on the call stack)

= completed node = element has been processed

A A

A ✓

✓

✓ ✓

More on traversals

void inOrderTraversal(Node t){

if(t != null) {

inOrderTraversal(t.left);

process(t.element);

inOrderTraversal(t.right);

}

}

A

B

D E

C

F G

Spring 2015 27CSE 373 Algorithms and Data Structures

= current node = processing (on the call stack)

= completed node

A A

A

= current node = processing (on the call stack)

= completed node = element has been processed

A A

A ✓

✓

✓ ✓

✓

More on traversals

void inOrderTraversal(Node t){

if(t != null) {

inOrderTraversal(t.left);

process(t.element);

inOrderTraversal(t.right);

}

}

A

B

D E

C

F G

Spring 2015 28CSE 373 Algorithms and Data Structures

= current node = processing (on the call stack)

= completed node

A A

A

= current node = processing (on the call stack)

= completed node = element has been processed

A A

A ✓

✓

✓ ✓

✓

More on traversals

void inOrderTraversal(Node t){

if(t != null) {

inOrderTraversal(t.left);

process(t.element);

inOrderTraversal(t.right);

}

}

A

B

D E

C

F G

Spring 2015 29CSE 373 Algorithms and Data Structures

= current node = processing (on the call stack)

= completed node

A A

A

= current node = processing (on the call stack)

= completed node = element has been processed

A A

A ✓

✓

✓ ✓

✓

✓

✓

More on traversals

void inOrderTraversal(Node t){

if(t != null) {

inOrderTraversal(t.left);

process(t.element);

inOrderTraversal(t.right);

}

}

A

B

D E

C

F G

Spring 2015 30CSE 373 Algorithms and Data Structures

= current node = processing (on the call stack)

= completed node

A A

A

= current node = processing (on the call stack)

= completed node = element has been processed

A A

A ✓

✓

✓ ✓

✓

✓

✓ ✓

Tree Traversals

A traversal is an order for visiting all the nodes of a tree

• Pre-order: root, left subtree, right subtree

+ * 2 4 5

• In-order: left subtree, root, right subtree

2 * 4 + 5

• Post-order: left subtree, right subtree, root

2 4 * 5 +

+

*

2 4

5

(an expression tree)

Spring 2015 31CSE 373 Algorithms and Data Structures

