CSE373: Data Structures & Algorithms
Lecture 28: Final review and class wrap-up
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Final Exam

As also indicated on the web page:

* Bring your student ID

* Next Tuesday, 2:30-4:20 in this room

« Cumulative but topics post-midterm about 2/3 of the questions
« See information on course web-page

* Not unlike the midterms in style, structure, etc.
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Terminology

Abstract Data Type (ADT)
— Mathematical description of a “thing” with set of operations
— Not concerned with implementation details

Algorithm

— A high level, language-independent description of a step-by-
step process

Data structure

— A specific organization of data and family of algorithms for
iImplementing an ADT

Implementation of a data structure
— A specific implementation in a specific language
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Asympftotic and Algorithm Analysis

1. Add up time for all parts of the algorithm

e.g. number of iterations = (n?+ n)/2
2. Eliminate low-order terms i.e. eliminate n: (n?)/2
3. Eliminate coefficients i.e. eliminate 1/2: (n?)

Examples:
— 4n+5 =0(n)
— 05nlogn+2n+7 = O(nlog n)
— n¥+27+3n =0(2")
— nlog (10n?)
«  2nlog (10n) = O(n log n)
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Amortized Analysis

* In amortized analysis, the time required to perform a
sequence of data structure operations is averaged
over all the operations performed.

« Typically used to show that the average cost of an
operation is small for a sequence of operations, even
though a single operation can cost a lot
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The Queue ADT

* Operations
create

destroy

enqueue G "% FEDCB
dequeue

is empty T T
Back Front

dequeue A
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The Stack ADT
Operations: A\ K’E DCBA

create
destroy
push
pop

top

TEHTAO®

is empty
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The Dictionary (a.k.a. Map) ADT

« Data:
— set of (key, value) pairs
— keys must be comparable

e catie
Catie Baker
OH: Wed 11.00-12.00

insert(catie, ....)

* Operations:

— insert (key,value) * rama
~ find(key) Rama Gokhale
~ delete (key) OH: Fri 3.30-4.30
B ~ find(rama)
Rama Gokhale, ...
e conrad
Conrad Nied

Will tend to emphasize the keys;

don’t forget about the stored values OH: Wed 4:00-5:00

..............O.Q..............J'.............
0 00 0000000000000 OCOEOGONOGONOGIOGEOGNONONONONONONONOEONONEOONOEOEOEOEEOEOOLO
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Trees

Binary tree: Each node has at most 2 children (branching factor 2)
n-ary tree: Each node has at most n children (branching factor n)
Perfect tree: Each row completely full

Complete tree: Each row completely full except maybe the bottom
row, which is filled from left to right

LS L
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Tree Calculations

Recall: Height of a tree 1s the maximum Height =4
number of edges from the root to a leaf.

What 1s the height of this tree?

® (&)

Height =0 @ Height = 1

What 1s the depth of node G?
Depth =2

What 1s the depth of node L?
Depth =4
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Tree Traversals

A traversal is an order for visiting all the nodes of a tree

 Pre-order. root, left subtree, right subtree
+*245

* [n-order: left subtree, root, right subtree
24 +5

» Post-order. left subtree, right subtree, root
24*5 + ]
(an expression tree)
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Binary Search Tree (BST) Data Structure

« Structure property (binary tree)
— Each node has < 2 children
— Result: keeps operations simple 9

* QOrder property (5) (11)

— All keys in left subtree smaller
than node’s key

— All keys in right subtree larger @ @
than node’s key
— Result: easy to find any given key @ @ @ @

* Operations ®
— Find, insert, delete, BuildTree
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The AVL Tree Data Structure

An AVL tree is a self-balancing binary search tree.

Structural properties
1. Binary tree property (same as BST)
2. Order property (same as for BST)

3. Balance property:
balance of every node is between -1 and 1

Result: Worst-case depth is O(log n)

 Operations
— find
— insert: First BST insert, then check balance and
potentially “fix” the AVL tree (4 cases).
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Priority Queues and Binary Heaps

* Priority Queue ADT:
— insert comparable object,
— deleteMin

insert

« Binary heap data structure:
— Complete binary tree
— Each node has less important
priority value than its parent

« insert and deleteMin operations = O(height-of-tree)=0(1log n)
— insert: put at new last position in tree and percolate-up

- deleteMin: remove root, put last element at root and
percolate-down
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Union-Find ADT

« Given an unchanging set S, create an initial partition of a set
— Typically each item in its own subset: {a}, {b}, {c}, ...

— Give each subset a “name” by choosing a representative
element

» Operations

— f£ind takes an element of S and returns the representative
element of the subsetitis in

— union takes two subsets and (permanently) makes one
larger subset

» Up-tree data structure
— With path compression and union by size
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Hash Tables

hash table

* Constant time accesses!
* A hash table 1s an array of some 0

fixed size, usually a prime number.
* General idea:

hash function:
h(K)
>
key space (e.g., integers, strings) TableSize —1

« Collision: when two keys map to the same location in the hash table.
« Two ways to resolve collision:
« Separate chaining
« Open Addressing (linear probing, quadratic probing, double hashing.)
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Memory Locality

« Temporal Locality (locality in time)

— If an item (a location in memory) is referenced, that same
location will tend to be referenced again soon.

« Spatial Locality (locality in space)

— |If an item is referenced, items whose addresses are close
by tend to be referenced soon.
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Graphs

* Vertex, node, edge

 Directed, undirected

« Weighted, unweighted

« Connected, disconnected, strongly/weakly connected
« Paths, cycles

« DAGs

* Adjacency lists and matrices
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Topological Sort

Problem: Given a DAG G=(V,E), output all vertices in an order such
that no vertex appears before another vertex that has an edge to it

One example output:
126, 142, 143, 374, 373, 417, 410, 413, XYZ, 415
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Graph Traversals

For an arbitrary graph and a starting node v, find all nodes reachable
from v (i.e., there exists a path from v)

Basic idea:
— Keep following nodes

— But “mark” nodes after visiting them, so the traversal terminates
and processes each reachable node exactly once

Important Graph traversal algorithms:

« “Depth-first search” “DFS”: recursively explore one part before
going back to the other parts not yet explored

EE A1

« “Breadth-first search” “BFS”: explore areas closer to the start node
first
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Dijkstra’s Algorithm: Lowest cost
paths

Initially, start node has cost 0 and all other nodes have cost o0

» At each step:
— Pick closest unknown vertex v
— Add it to the “cloud” of known vertices
— Update distances for nodes with edges from v

e That's it!
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Minimum Spanning Trees

The minimum-spanning-tree problem

— Given a weighted undirected graph, compute a spanning
tree of minimum weight

Given an undirected graph G=(V,E), find a graph G’=(V, E’) such
that:
— E’is a subset of E

- |E’ =|V]-1 G’ is a minimum
— G’ is connected spanning tree.
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Two different approaches

Prim’s Algorithm Kruskals’s Algorithm
Almost identical to Dijkstra’s Completely different!
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Sorting: The Big Picture

Surprising amount of neat stuff to say about sorting:

Simple Fancier Comparison Specialized Handling
algorithms: algorithms: lower bound: algorithms: huge data
Oo(n?) O(n log n) Q(n log n) O(n) sets
Insertion sort  Heap sort Bucket sort External
Selection sort  Merge sort Radix sort sorting
Shell sort Quick sort
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Preserving Abstractions

— Need to deep-copy data passed into abstractions to avoid
pain and suffering

— Need to deep-copy data passed out of abstractions to avoid
pain and suffering (unless data is “new” or no longer used in
abstraction)

— If objects are immutable (no way to update fields or things
they refer to), then copying unnecessary
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Algorithm Design Techniques

» Greedy (Shortest path, minimum spanning tree, ...)
Divide and Conquer

— Divide the problem into smaller subproblems,
solve them, and combine into the overall solution

— Often done recursively
— Quick sort, merge sort are great examples
« Dynamic Programming

— Brute force through all possible solutions, storing solutions to
subproblems to avoid repeat computation

« Backtracking (A clever form of exhaustive search)
P vs. NP (Know what it means for an algorithm to be in NP, in P.)
« Parallelism

— Use threads to split work among many processors.
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Phew! That’s It.

Good luck ©

Spring 2015
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Victory Lap

A victory lap is an extra trip
around the track
— By the exhausted victors
(that’'s us) ©

Review course goals
— Slides from Lecture 1
— What makes CSE 373 special
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Thank you!

Big thank-you to your TAs
— Amazingly cohesive “big team”
— Prompt grading and question-answering
— Optional TA sessions weren’t optional for them!

Andy Li Rama Gokhale Luyi Lu Cyndi Ai Johnson Goh
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Thank you!

And huge thank you to all of you
— Great attitude
— Showed up to class (most of the time)
— Occasionally laughed at stuff ©
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Now a few slides from Lecture 1
— Hopefully they make more sense now
— Hopefully we succeeded
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Data Structures

* Introduction to Algorithm Analysis
« Lists, Stacks, Queues

» Trees, Hashing, Dictionaries

» Heaps, Priority Queues

« Sorting

» Disjoint Sets

« Graph Algorithms

» Introduction to Parallelism and Concurrency
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Goals

« Be able to make good design choices as a developer, project
manager, etc.

— Reason in terms of the general abstractions that come up in
all non-trivial software (and many non-software) systems

« Be able to justify and communicate your design decisions

You will learn the key abstractions used almost every day in just
about anything related to computing and software.

 Thisis not a course about Java! We use Java as a tool, but the
data structures you learn about can be implemented in any
language.
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L ast slide

| had a lot of fun and learned a great deal this quarter.

You have learned the key ideas for organizing data, a skill that far
transcends computer science.
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