CSE373: Data Structures & Algorithms
Lecture 28: Final review and class wrap-up

Catie Baker
Spring 2015

Final Exam

As also indicated on the web page:

* Bring your student ID

* Next Tuesday, 2:30-4:20 in this room

« Cumulative but topics post-midterm about 2/3 of the questions
« See information on course web-page

* Not unlike the midterms in style, structure, etc.

Spring 2015 CSE373: Data Structures & Algorithms

Terminology

Abstract Data Type (ADT)
— Mathematical description of a “thing” with set of operations
— Not concerned with implementation details

Algorithm

— A high level, language-independent description of a step-by-
step process

Data structure

— A specific organization of data and family of algorithms for
iImplementing an ADT

Implementation of a data structure
— A specific implementation in a specific language

Spring 2015 3 CSE373: Data
Structures &

Asympftotic and Algorithm Analysis

1. Add up time for all parts of the algorithm

e.g. number of iterations = (n?+ n)/2
2. Eliminate low-order terms i.e. eliminate n: (n?)/2
3. Eliminate coefficients i.e. eliminate 1/2: (n?)

Examples:
— 4n+5 =0(n)
— 05nlogn+2n+7 = O(nlog n)
— n¥+27+3n =0(2")
— nlog (10n?)
« 2nlog (10n) = O(n log n)

Spring 2015 4 CSE373: Data
Structures &

Amortized Analysis

* In amortized analysis, the time required to perform a
sequence of data structure operations is averaged
over all the operations performed.

« Typically used to show that the average cost of an
operation is small for a sequence of operations, even
though a single operation can cost a lot

Spring 2015 5 CSE 373 Data
Structures and

The Queue ADT

* Operations
create

destroy

enqueue G "% FEDCB
dequeue

is empty T T
Back Front

dequeue A

Spring 2015 6 CSE373: Data
Structures &

The Stack ADT
Operations: A\ K’E DCBA

create
destroy
push
pop

top

TEHTAO®

is empty

Spring 2015 7 CSE373: Data
Structures &

The Dictionary (a.k.a. Map) ADT

« Data:
— set of (key, value) pairs
— keys must be comparable

e catie
Catie Baker
OH: Wed 11.00-12.00

insert(catie,)

* Operations:

— insert (key,value) * rama
~ find(key) Rama Gokhale
~ delete (key) OH: Fri 3.30-4.30
B ~ find(rama)
Rama Gokhale, ...
e conrad
Conrad Nied

Will tend to emphasize the keys;

don’t forget about the stored values OH: Wed 4:00-5:00

..............O.Q..............J'.............
0 00 0000000000000 OCOEOGONOGONOGIOGEOGNONONONONONONONOEONONEOONOEOEOEOEEOEOOLO

Spring 2015 8 CSE373: Data
Structures &

Trees

Binary tree: Each node has at most 2 children (branching factor 2)
n-ary tree: Each node has at most n children (branching factor n)
Perfect tree: Each row completely full

Complete tree: Each row completely full except maybe the bottom
row, which is filled from left to right

LS L

Spring 2015 9 CSE373: Data
Structures &

Tree Calculations

Recall: Height of a tree 1s the maximum Height =4
number of edges from the root to a leaf.

What 1s the height of this tree?

® (&)

Height =0 @ Height = 1

What 1s the depth of node G?
Depth =2

What 1s the depth of node L?
Depth =4

Spring 2015 CSE373: Data Structures & Algorithms 10

Tree Traversals

A traversal is an order for visiting all the nodes of a tree

 Pre-order. root, left subtree, right subtree
+*245

* [n-order: left subtree, root, right subtree
24 +5

» Post-order. left subtree, right subtree, root
24*5 +]
(an expression tree)

Spring 2015 11 CSE373: Data
Structures &

Binary Search Tree (BST) Data Structure

« Structure property (binary tree)
— Each node has < 2 children
— Result: keeps operations simple 9

* QOrder property (5) (11)

— All keys in left subtree smaller
than node’s key

— All keys in right subtree larger @ @
than node’s key
— Result: easy to find any given key @ @ @ @

* Operations ®
— Find, insert, delete, BuildTree

Spring 2015 CSE373: Data Structures & Algorithms 12

The AVL Tree Data Structure

An AVL tree is a self-balancing binary search tree.

Structural properties
1. Binary tree property (same as BST)
2. Order property (same as for BST)

3. Balance property:
balance of every node is between -1 and 1

Result: Worst-case depth is O(log n)

 Operations
— find
— insert: First BST insert, then check balance and
potentially “fix” the AVL tree (4 cases).

Spring 2015 CSE373: Data Structures & Algorithms 13

Priority Queues and Binary Heaps

* Priority Queue ADT:
— insert comparable object,
— deleteMin

insert

« Binary heap data structure:
— Complete binary tree
— Each node has less important
priority value than its parent

« insert and deleteMin operations = O(height-of-tree)=0(1log n)
— insert: put at new last position in tree and percolate-up

- deleteMin: remove root, put last element at root and
percolate-down

Spring 2015 14 CSE373: Data
Structures &

Union-Find ADT

« Given an unchanging set S, create an initial partition of a set
— Typically each item in its own subset: {a}, {b}, {c}, ...

— Give each subset a “name” by choosing a representative
element

» Operations

— f£ind takes an element of S and returns the representative
element of the subsetitis in

— union takes two subsets and (permanently) makes one
larger subset

» Up-tree data structure
— With path compression and union by size

Spring 2015 15 CSE373: Data
Structures &

Hash Tables

hash table

* Constant time accesses!
* A hash table 1s an array of some 0

fixed size, usually a prime number.
* General idea:

hash function:
h(K)
>
key space (e.g., integers, strings) TableSize —1

« Collision: when two keys map to the same location in the hash table.
« Two ways to resolve collision:
« Separate chaining
« Open Addressing (linear probing, quadratic probing, double hashing.)

Spring 2015 CSE373: Data Structures & Algorithms 16

Memory Locality

« Temporal Locality (locality in time)

— If an item (a location in memory) is referenced, that same
location will tend to be referenced again soon.

« Spatial Locality (locality in space)

— |If an item is referenced, items whose addresses are close
by tend to be referenced soon.

Spring 2015 17 CSE373: Data
Structures &

Graphs

* Vertex, node, edge

 Directed, undirected

« Weighted, unweighted

« Connected, disconnected, strongly/weakly connected
« Paths, cycles

« DAGs

* Adjacency lists and matrices

Spring 2015 CSE373: Data Structures & Algorithms 18

Topological Sort

Problem: Given a DAG G=(V,E), output all vertices in an order such
that no vertex appears before another vertex that has an edge to it

One example output:
126, 142, 143, 374, 373, 417, 410, 413, XYZ, 415

Spring 2015 19 CSE373: Data
Structures &

Graph Traversals

For an arbitrary graph and a starting node v, find all nodes reachable
from v (i.e., there exists a path from v)

Basic idea:
— Keep following nodes

— But “mark” nodes after visiting them, so the traversal terminates
and processes each reachable node exactly once

Important Graph traversal algorithms:

« “Depth-first search” “DFS”: recursively explore one part before
going back to the other parts not yet explored

EE A1

« “Breadth-first search” “BFS”: explore areas closer to the start node
first

Spring 2015 20 CSE373: Data
Structures &

Dijkstra’s Algorithm: Lowest cost
paths

Initially, start node has cost 0 and all other nodes have cost o0

» At each step:
— Pick closest unknown vertex v
— Add it to the “cloud” of known vertices
— Update distances for nodes with edges from v

e That's it!

Spring 2015 21 CSE373: Data
Structures &

Minimum Spanning Trees

The minimum-spanning-tree problem

— Given a weighted undirected graph, compute a spanning
tree of minimum weight

Given an undirected graph G=(V,E), find a graph G’=(V, E’) such
that:
— E’is a subset of E

- |E’ =|V]-1 G’ is a minimum
— G’ is connected spanning tree.
Spring 2015 22 CSE373: Data

Structures &

Two different approaches

Prim’s Algorithm Kruskals’s Algorithm
Almost identical to Dijkstra’s Completely different!

Spring 2015 23 CSE373: Data
Structures &

Sorting: The Big Picture

Surprising amount of neat stuff to say about sorting:

Simple Fancier Comparison Specialized Handling
algorithms: algorithms: lower bound: algorithms: huge data
Oo(n?) O(n log n) Q(n log n) O(n) sets
Insertion sort Heap sort Bucket sort External
Selection sort Merge sort Radix sort sorting
Shell sort Quick sort
Spring 2015 24 CSE373: Data

Structures &

Preserving Abstractions

— Need to deep-copy data passed into abstractions to avoid
pain and suffering

— Need to deep-copy data passed out of abstractions to avoid
pain and suffering (unless data is “new” or no longer used in
abstraction)

— If objects are immutable (no way to update fields or things
they refer to), then copying unnecessary

Spring 2015 25 CSE373: Data
Structures &

Algorithm Design Techniques

» Greedy (Shortest path, minimum spanning tree, ...)
Divide and Conquer

— Divide the problem into smaller subproblems,
solve them, and combine into the overall solution

— Often done recursively
— Quick sort, merge sort are great examples
« Dynamic Programming

— Brute force through all possible solutions, storing solutions to
subproblems to avoid repeat computation

« Backtracking (A clever form of exhaustive search)
P vs. NP (Know what it means for an algorithm to be in NP, in P.)
« Parallelism

— Use threads to split work among many processors.

Spring 2015 26 CSE373: Data
Structures &

Phew! That’s It.

Good luck ©

Spring 2015

CSE373: Data Structures & Algorithms

27

Victory Lap

A victory lap is an extra trip
around the track
— By the exhausted victors
(that’'s us) ©

Review course goals
— Slides from Lecture 1
— What makes CSE 373 special

Spring 2015 CSE373: Data Structures & Algorithms

28

Thank you!

Big thank-you to your TAs
— Amazingly cohesive “big team”
— Prompt grading and question-answering
— Optional TA sessions weren’t optional for them!

Andy Li Rama Gokhale Luyi Lu Cyndi Ai Johnson Goh

Spring 2015 CSE373: Data Structures & Algorithms 29

Thank you!

And huge thank you to all of you
— Great attitude
— Showed up to class (most of the time)
— Occasionally laughed at stuff ©

Spring 2015 CSE373: Data Structures & Algorithms

30

Now a few slides from Lecture 1
— Hopefully they make more sense now
— Hopefully we succeeded

Spring 2015 CSE373: Data Structures & Algorithms

31

Data Structures

* Introduction to Algorithm Analysis
« Lists, Stacks, Queues

» Trees, Hashing, Dictionaries

» Heaps, Priority Queues

« Sorting

» Disjoint Sets

« Graph Algorithms

» Introduction to Parallelism and Concurrency

Spring 2015 CSE373: Data Structures & Algorithms

32

Goals

« Be able to make good design choices as a developer, project
manager, etc.

— Reason in terms of the general abstractions that come up in
all non-trivial software (and many non-software) systems

« Be able to justify and communicate your design decisions

You will learn the key abstractions used almost every day in just
about anything related to computing and software.

 Thisis not a course about Java! We use Java as a tool, but the
data structures you learn about can be implemented in any
language.

Spring 2015 33 CSE373: Data
Structures &

L ast slide

| had a lot of fun and learned a great deal this quarter.

You have learned the key ideas for organizing data, a skill that far
transcends computer science.

Spring 2015 CSE373: Data Structures & Algorithms

34

