
CSE373: Data Structures & Algorithms

Lecture 26: Introduction to Multithreading &

Fork-Join Parallelism

Catie Baker

Spring 2015

Changing a major assumption

So far most or all of your study of computer science has assumed

One thing happened at a time

Called sequential programming – everything part of one sequence

Removing this assumption creates major challenges & opportunities

– Programming: Divide work among threads of execution and

coordinate (synchronize) among them

– Algorithms: How can parallel activity provide speed-up

(more throughput: work done per unit time)

– Data structures: May need to support concurrent access

(multiple threads operating on data at the same time)

2CSE373: Data Structures & AlgorithmsSpring 2015

A simplified view of history

Writing correct and efficient multithreaded code is often much more

difficult than for single-threaded (i.e., sequential) code

– Especially in common languages like Java and C

– So typically stay sequential if possible

From roughly 1980-2005, desktop computers got exponentially

faster at running sequential programs

– About twice as fast every couple years

But nobody knows how to continue this

– Increasing clock rate generates too much heat

– Relative cost of memory access is too high

– But we can keep making “wires exponentially smaller”

(Moore’s “Law”), so put multiple processors on the same

chip (“multicore”)

3CSE373: Data Structures & AlgorithmsSpring 2015

What to do with multiple processors?

• Next computer you buy will likely have 4 processors

(your current one might already)

– Wait a few years and it will be 8, 16, 32, …

– The chip companies have decided to do this (not a “law”)

• What can you do with them?

– Run multiple totally different programs at the same time

• Already do that? Yes, but with time-slicing

– Do multiple things at once in one program

• Our focus – more difficult

• Requires rethinking everything from asymptotic

complexity to how to implement data-structure operations

4CSE373: Data Structures & AlgorithmsSpring 2015

Parallelism vs. Concurrency

Note: Terms not yet standard but the perspective is essential

– Many programmers confuse these concepts

5CSE373: Data Structures & Algorithms

There is some connection:

– Common to use threads for both

– If parallel computations need access to shared resources,

then the concurrency needs to be managed

We will just do a little parallelism, avoiding concurrency issues

Parallelism:

Use extra resources to

solve a problem faster

resources

Concurrency:

Correctly and efficiently manage

access to shared resources

requestswork

resource

Spring 2015

An analogy

CS1 idea: A program is like a recipe for a cook

– One cook who does one thing at a time! (Sequential)

Parallelism:

– Have lots of potatoes to slice?

– Hire helpers, hand out potatoes and knives

– But too many chefs and you spend all your time coordinating

Concurrency:

– Lots of cooks making different things, but only 4 stove burners

– Want to allow access to all 4 burners, but not cause spills or

incorrect burner settings

6CSE373: Data Structures & AlgorithmsSpring 2015

Shared memory
The model we will assume is shared memory with explicit threads

– Not the only approach, may not be best, but time for only one

Old story: A running program has

– One program counter (current statement executing)

– One call stack (with each stack frame holding local variables)

– Objects in the heap created by memory allocation (i.e., new)

• (nothing to do with data structure called a heap)

– Static fields - belong to the class and not an instance (or object)

of the class. Only one for all instances of a class.

New story:

– A set of threads, each with its own program counter & call stack

• No access to another thread’s local variables

– Threads can (implicitly) share static fields / objects

• To communicate, write somewhere another thread reads

7CSE373: Data Structures & AlgorithmsSpring 2015

Shared memory

8CSE373: Data Structures & Algorithms

…

pc=…

…

pc=…

…

pc=…

…

Unshared:

locals and

control

Shared:

objects and

static fields

Threads each have own unshared call stack and current statement

– (pc for “program counter”)
– local variables are numbers, null, or heap references

Any objects can be shared, but most are not

Spring 2015

Our Needs

To write a shared-memory parallel program, need new primitives

from a programming language or library

• Ways to create and run multiple things at once

– Let’s call these things threads

• Ways for threads to share memory

– Often just have threads with references to the same objects

• Ways for threads to coordinate (a.k.a. synchronize)

– A way for one thread to wait for another to finish

– [Other features needed in practice for concurrency]

9CSE373: Data Structures & AlgorithmsSpring 2015

Java basics

Learn a couple basics built into Java via java.lang.Thread

– But for style of parallel programming we’ll advocate, do not use

these threads; use Java 7’s ForkJoin Framework instead

To get a new thread running:

1. Define a subclass C of java.lang.Thread, overriding run

2. Create an object of class C

3. Call that object’s start method

• start sets off a new thread, using run as its “main”

What if we instead called the run method of C?

– This would just be a normal method call, in the current thread

Let’s see how to share memory and coordinate via an example…

10CSE373: Data Structures & AlgorithmsSpring 2015

Parallelism idea
• Example: Sum elements of a large array

• Idea: Have 4 threads simultaneously sum 1/4 of the array

– Warning: This is an inferior first approach, but it’s usually good to

start with something naïve works

ans0 ans1 ans2 ans3

+

ans

– Create 4 thread objects, each given a portion of the work

– Call start() on each thread object to actually run it in parallel

– Wait for threads to finish using join()

– Add together their 4 answers for the final result

11CSE373: Data Structures & AlgorithmsSpring 2015

First attempt, part 1

12CSE373: Data Structures & Algorithms

class SumThread extends java.lang.Thread {

int lo; // arguments
int hi;
int[] arr;

int ans = 0; // result

SumThread(int[] a, int l, int h) {
lo=l; hi=h; arr=a;

}

public void run() { //override must have this type
for(int i=lo; i < hi; i++)
ans += arr[i];

}
}

Because we must override a no-arguments/no-result run,

we use fields to communicate across threads

Spring 2015

First attempt, continued (wrong)

13CSE373: Data Structures & Algorithms

class SumThread extends java.lang.Thread {
int lo, int hi, int[] arr; // arguments
int ans = 0; // result
SumThread(int[] a, int l, int h) { … }
public void run(){ … } // override

}

int sum(int[] arr){ // can be a static method
int len = arr.length;
int ans = 0;
SumThread[] ts = new SumThread[4];
for(int i=0; i < 4; i++) // do parallel computations
ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);

for(int i=0; i < 4; i++) // combine results
ans += ts[i].ans;

return ans;
}

Spring 2015

Second attempt (still wrong)

14CSE373: Data Structures & Algorithms

int sum(int[] arr){ // can be a static method
int len = arr.length;
int ans = 0;
SumThread[] ts = new SumThread[4];
for(int i=0; i < 4; i++){// do parallel computations
ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);
ts[i].start(); // start not run

}
for(int i=0; i < 4; i++) // combine results
ans += ts[i].ans;

return ans;
}

class SumThread extends java.lang.Thread {
int lo, int hi, int[] arr; // arguments
int ans = 0; // result
SumThread(int[] a, int l, int h) { … }
public void run(){ … } // override

}

Spring 2015

Third attempt (correct in spirit)

15CSE373: Data Structures & Algorithms

int sum(int[] arr){// can be a static method
int len = arr.length;
int ans = 0;
SumThread[] ts = new SumThread[4];
for(int i=0; i < 4; i++){// do parallel computations
ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);
ts[i].start();

}
for(int i=0; i < 4; i++) { // combine results
ts[i].join(); // wait for helper to finish!
ans += ts[i].ans;

}
return ans;

}

class SumThread extends java.lang.Thread {
int lo, int hi, int[] arr; // arguments
int ans = 0; // result
SumThread(int[] a, int l, int h) { … }
public void run(){ … } // override

}

Spring 2015

Join (not the most descriptive word)
• The Thread class defines various methods you could not

implement on your own

– For example: start, which calls run in a new thread

• The join method is valuable for coordinating this kind of

computation

– Caller blocks until/unless the receiver is done executing
(meaning the call to run returns)

– Else we would have a race condition on ts[i].ans

(answer would depend on what finishes first)

• This style of parallel programming is called “fork/join”

• Java detail: code has 1 compile error because join may throw

java.lang.InterruptedException

– In basic parallel code, should be fine to catch-and-exit

16CSE373: Data Structures & AlgorithmsSpring 2015

Shared memory?

• Fork-join programs (thankfully) do not require much focus on

sharing memory among threads

• But in languages like Java, there is memory being shared.

In our example:

– lo, hi, arr fields written by “main” thread, read by helper

thread

– ans field written by helper thread, read by “main” thread

• When using shared memory, you must avoid race conditions

– We will stick with join to do so

17CSE373: Data Structures & AlgorithmsSpring 2015

A better approach

Several reasons why this is a poor parallel algorithm

1. Want code to be reusable and efficient across platforms

– “Forward-portable” as core count grows

– So at the very least, parameterize by the number of threads

18CSE373: Data Structures & Algorithms

int sum(int[] arr, int numTs){
int ans = 0;
SumThread[] ts = new SumThread[numTs];
for(int i=0; i < numTs; i++){
ts[i] = new SumThread(arr,(i*arr.length)/numTs,

((i+1)*arr.length)/numTs);
ts[i].start();
}
for(int i=0; i < numTs; i++) {
ts[i].join();
ans += ts[i].ans;

}
return ans;

}

Spring 2015

A Better Approach

2. Want to use (only) processors “available to you now”

– Not used by other programs or threads in your program

• Maybe caller is also using parallelism

• Available cores can change even while your threads run

19CSE373: Data Structures & Algorithms

// numThreads == numProcessors is bad
// if some are needed for other things
int sum(int[] arr, int numTs){
…

}

Spring 2015

A Better Approach

3. Though unlikely for sum, in general subproblems may take

significantly different amounts of time

– Example: Apply method f to every array element, but maybe

f is much slower for some data items

• Example: Is a large integer prime?

– If we create 4 threads and all the slow data is processed by 1

of them, we won’t get nearly a 4x speedup

• Example of a load imbalance

20CSE373: Data Structures & AlgorithmsSpring 2015

A Better Approach

The counterintuitive (?) solution to all these problems is to use lots of

threads, far more than the number of processors

– But this will require changing our algorithm

– [And using a different Java library]

21CSE373: Data Structures & Algorithms

ans0 ans1 … ansN

ans

1. Forward-portable: Lots of helpers each doing a small piece

2. Processors available: Hand out “work chunks” as you go

3. Load imbalance: No problem if slow thread scheduled early enough

• Variation probably small anyway if pieces of work are small

Spring 2015

Naïve algorithm is poor

Suppose we create 1 thread to process every 1000 elements

22CSE373: Data Structures & Algorithms

int sum(int[] arr){
…
int numThreads = arr.length / 1000;
SumThread[] ts = new SumThread[numThreads];
…

}

Then combining results will have arr.length / 1000 additions

• Linear in size of array (with constant factor 1/1000)

• Previously we had only 4 pieces (constant in size of array)

In the extreme, if we create 1 thread for every 1 element, the loop

to combine results has length-of-array iterations

• Just like the original sequential algorithm

Spring 2015

A better idea

This is straightforward to implement using divide-and-conquer

– Parallelism for the recursive calls

23CSE373: Data Structures & Algorithms

+ + + + + + + +

+ + + +

+ +

+

Spring 2015

Divide-and-conquer to the rescue!

The key is to do the result-combining in parallel as well

– And using recursive divide-and-conquer makes this natural

– Easier to write and more efficient asymptotically!

24CSE373: Data Structures & AlgorithmsSpring 2015

class SumThread extends java.lang.Thread {
int lo; int hi; int[] arr; // arguments
int ans = 0; // result
SumThread(int[] a, int l, int h) { … }
public void run(){ // override
if(hi – lo < SEQUENTIAL_CUTOFF)
for(int i=lo; i < hi; i++)
ans += arr[i];

else {
SumThread left = new SumThread(arr,lo,(hi+lo)/2);
SumThread right= new SumThread(arr,(hi+lo)/2,hi);
left.start();
right.start();
left.join(); // don’t move this up a line – why?
right.join();
ans = left.ans + right.ans;

}
}

}
int sum(int[] arr){

SumThread t = new SumThread(arr,0,arr.length);
t.run();
return t.ans;

}

Divide-and-conquer really works

• The key is divide-and-conquer parallelizes the result-combining

– If you have enough processors, total time is height of the tree:
O(log n) (optimal, exponentially faster than sequential O(n))

25CSE373: Data Structures & Algorithms

+ + + + + + + +

+ + + +

+ +

+

Spring 2015

Being realistic

• In theory, you can divide down to single elements, do all your

result-combining in parallel and get optimal speedup

– Total time O(n/numProcessors + log n)

• In practice, creating all those threads and communicating

swamps the savings, so:

– Use a sequential cutoff, typically around 500-1000

• Eliminates almost all the recursive thread creation

(bottom levels of tree)

• Exactly like quicksort switching to insertion sort for small

subproblems, but more important here

– Do not create two recursive threads; create one and do the

other “yourself”

• Cuts the number of threads created by another 2x

26CSE373: Data Structures & AlgorithmsSpring 2015

Being realistic, part 2

• Even with all this care, Java’s threads are too “heavyweight”

– Constant factors, especially space overhead

– Creating 20,000 Java threads is just a bad idea 

• The ForkJoin Framework is designed to meet the needs of divide-

and-conquer fork-join parallelism

– In the Java 7 standard libraries

– Library’s implementation is a fascinating but advanced topic

• Next lecture will discuss its guarantees, not how it does it

– Names of methods and how to use them slightly different

27CSE373: Data Structures & AlgorithmsSpring 2015

