
CSE373: Data Structure & Algorithms

Lecture 23: More Sorting and Other

Classes of Algorithms

Catie Baker

Spring 2015

Admin

• No class on Monday

• Extra time for homework 5 

Spring 2015 2CSE373: Data Structures & Algorithms

Sorting: The Big Picture

Surprising amount of neat stuff to say about sorting:

Spring 2015 3CSE373: Data Structures & Algorithms

Simple

algorithms:

O(n2)

Fancier

algorithms:

O(n log n)

Comparison

lower bound:

(n log n)

Specialized

algorithms:

O(n)

Handling

huge data

sets

Insertion sort

Selection sort

Shell sort

…

Heap sort

Merge sort

Quick sort

…

Bucket sort

Radix sort

External

sorting

Bucket Sort (a.k.a. BinSort)

• If all values to be sorted are known to be integers between 1

and K (or any small range):

– Create an array of size K

– Put each element in its proper bucket (a.k.a. bin)

– If data is only integers, no need to store more than a count of

how times that bucket has been used

• Output result via linear pass through array of buckets

Spring 2015 4CSE373: Data Structures & Algorithms

count array

1 3

2 1

3 2

4 2

5 3

• Example:

K=5

input (5,1,3,4,3,2,1,1,5,4,5)

output: 1,1,1,2,3,3,4,4,5,5,5

Analyzing Bucket Sort

• Overall: O(n+K)

– Linear in n, but also linear in K

– (n log n) lower bound does not apply because this is not a

comparison sort

• Good when K is smaller (or not much larger) than n

– We don’t spend time doing comparisons of duplicates

• Bad when K is much larger than n

– Wasted space; wasted time during linear O(K) pass

• For data in addition to integer keys, use list at each bucket

Spring 2015 5CSE373: Data Structures & Algorithms

Bucket Sort with Data

• Most real lists aren’t just keys; we have data

• Each bucket is a list (say, linked list)

• To add to a bucket, insert in O(1) (at beginning, or keep pointer to

last element)

count array

1

2

3

4

5

• Example: Movie ratings;

scale 1-5;1=bad, 5=excellent

Input=

5: Casablanca

3: Harry Potter movies

5: Star Wars Original

Trilogy

1: Rocky V

Rocky V

Harry Potter

Casablanca Star Wars

•Result: 1: Rocky V, 3: Harry Potter, 5: Casablanca, 5: Star Wars

•Easy to keep ‘stable’; Casablanca still before Star Wars

Spring 2015 6CSE373: Data Structures & Algorithms

Visualization

• http://www.cs.usfca.edu/~galles/visualization/CountingSort.html

Spring 2015 7CSE373: Data Structures & Algorithms

http://www.cs.usfca.edu/~galles/visualization/CountingSort.html

Radix sort

• Origins go back to the 1890 U.S. census

• Radix = “the base of a number system”

– Examples will use 10 because we are used to that

– In implementations use larger numbers

• For example, for ASCII strings, might use 128

• Idea:

– Bucket sort on one digit at a time

• Number of buckets = radix

• Starting with least significant digit

• Keeping sort stable

– Do one pass per digit

– Invariant: After k passes (digits), the last k digits are sorted

Spring 2015 8CSE373: Data Structures & Algorithms

Example

Radix = 10

Input: 478

537

9

721

3

38

143

67

Spring 2015 9CSE373: Data Structures & Algorithms

First pass:

bucket sort by ones digit

1

721

2 3

3

143

4 5 6 7

537

67

8

478

38

9

9

0

Order now: 721

3

143

537

67

478

38

9

Example

Spring 2015 10CSE373: Data Structures & Algorithms

Second pass:

stable bucket sort by tens digit

1

721

2 3

3

143

4 5 6 7

537

67

8

478

38

9

9

0

Order now: 3

9

721

537

38

143

67

478

Radix = 10

Order was: 721

3

143

537

67

478

38

9

1 2

721

3

537

38

4

143

5 6

67

7

478

8 90

3

9

Example

Spring 2015 11CSE373: Data Structures & Algorithms

Third pass:

stable bucket sort by 100s digit

Order now: 3

9

38

67

143

478

537

721

Radix = 10

1

143

2 3 4

478

5

537

6 7

721

8 90

3

9

38

67Order was: 3

9

721

537

38

143

67

478

1 2

721

3

537

38

4

143

5 6

67

7

478

8 90

3

9

Analysis

Input size: n

Number of buckets = Radix: B

Number of passes = “Digits”: P

Work per pass is 1 bucket sort: O(B+n)

Total work is O(P(B+n))

Compared to comparison sorts, sometimes a win, but often not

– Example: Strings of English letters up to length 15

• Run-time proportional to: 15*(52 + n)

• This is less than n log n only if n > 33,000

• Of course, cross-over point depends on constant factors of

the implementations

– And radix sort can have poor locality properties

Spring 2015 12CSE373: Data Structures & Algorithms

Sorting: The Big Picture

Surprising amount of neat stuff to say about sorting:

Spring 2015 13CSE373: Data Structures & Algorithms

Simple

algorithms:

O(n2)

Fancier

algorithms:

O(n log n)

Comparison

lower bound:

(n log n)

Specialized

algorithms:

O(n)

Handling

huge data

sets

Insertion sort

Selection sort

Shell sort

…

Heap sort

Merge sort

Quick sort

…

Bucket sort

Radix sort

External

sorting

Sorting massive data

• Need sorting algorithms that minimize disk/tape access time:

– Quicksort and Heapsort both jump all over the array, leading to

expensive random disk accesses

– Merge sort scans linearly through arrays, leading to (relatively)

efficient sequential disk access

• Merge sort is the basis of massive sorting

• Merge sort can leverage multiple disks

14CSE373: Data Structures & AlgorithmsFall 2013

External Merge Sort

• Sort 900 MB using 100 MB RAM

– Read 100 MB of data into memory

– Sort using conventional method (e.g. quicksort)

– Write sorted 100MB to temp file

– Repeat until all data in sorted chunks (900/100 = 9 total)

• Read first 10 MB of each sorted chuck, merge into remaining

10MB

– writing and reading as necessary

– Single merge pass instead of log n

– Additional pass helpful if data much larger than memory

• Parallelism and better hardware can improve performance

• Distribution sorts (similar to bucket sort) are also used

Spring 2015 15CSE373: Data Structures & Algorithms

Last Slide on Sorting

• Simple O(n2) sorts can be fastest for small n

– Selection sort, Insertion sort (latter linear for mostly-sorted)

– Good for “below a cut-off” to help divide-and-conquer sorts

• O(n log n) sorts

– Heap sort, in-place but not stable nor parallelizable

– Merge sort, not in place but stable and works as external sort

– Quick sort, in place but not stable and O(n2) in worst-case

• Often fastest, but depends on costs of comparisons/copies

•  (n log n) is worst-case and average lower-bound for sorting by

comparisons

• Non-comparison sorts

– Bucket sort good for small number of possible key values

– Radix sort uses fewer buckets and more phases

• Best way to sort? It depends!

Spring 2015 16CSE373: Data Structures & Algorithms

Done with sorting! (phew..)

• Moving on….

• There are many many algorithm techniques in the world

– We’ve learned a few

• What are a few other “classic” algorithm techniques you should

at least have heard of?

– And what are the main ideas behind how they work?

Spring 2015 17CSE373: Data Structures & Algorithms

Algorithm Design Techniques

• Greedy

– Shortest path, minimum spanning tree, …

• Divide and Conquer

– Divide the problem into smaller subproblems,

solve them, and combine into the overall solution

– Often done recursively

– Quick sort, merge sort are great examples

• Dynamic Programming

– Brute force through all possible solutions, storing solutions to

subproblems to avoid repeat computation

• Backtracking

– A clever form of exhaustive search

Spring 2015 18CSE373: Data Structures & Algorithms

Dynamic Programming: Idea

• Divide a bigger problem into many smaller subproblems

• If the number of subproblems grows exponentially, a recursive

solution may have an exponential running time 

• Dynamic programming to the rescue! 

• Often an individual subproblem may occur many times!

– Store the results of subproblems in a table and re-use them

instead of recomputing them

– Technique called memoization

Spring 2015 19CSE373: Data Structures & Algorithms

Fibonacci Sequence: Recursive

• The fibonacci sequence is a very famous number sequence

• 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

• The next number is found by adding up the two numbers before it.

• Recursive solution:

• Exponential running time!

– A lot of repeated computation

Spring 2015 20CSE373: Data Structures & Algorithms

fib(int n) {

if (n == 1 || n == 2) {

return 1

}

return fib(n – 2) + fib(n – 1)

}

Repeated computation

Spring 2015 21CSE373: Data Structures & Algorithms

f(7)

f(5)

f(3)

f(4)

f(1) f(2)

f(6)

f(4) f(5)

f(2) f(3)

f(3)

f(4)
f(1) f(2)

f(2) f(3)

f(1) f(2)

f(2) f(3)

f(1) f(2)

f(1) f(2)

Fibonacci Sequence: memoized

Now each call of fib(x) only gets computed once for each x!

Spring 2015 22CSE373: Data Structures & Algorithms

fib(int n) {

Map results = new Map()

results.put(1, 1)

results.put(2, 1)

return fibHelper(n, results)

}

fibHelper(int n, Map results) {

if (!results.contains(n)) {

results.put(n, fibHelper(n-2)+fibHelper(n-1))

}

return results.get(n)

}

23

Comments

• Dynamic programming relies on working “from the bottom up”

and saving the results of solving simpler problems

– These solutions to simpler problems are then used to

compute the solution to more complex problems

• Dynamic programming solutions can often be quite complex

and tricky

• Dynamic programming is used for optimization problems,

especially ones that would otherwise take exponential time

– Only problems that satisfy the principle of optimality are

suitable for dynamic programming solutions

– i.e. the subsolutions of an optimal solution of the problem

are themselves optimal solutions for their subproblems

• Since exponential time is unacceptable for all but the smallest

problems, dynamic programming is sometimes essential

Spring 2015 CSE373: Data Structures & Algorithms

Algorithm Design Techniques

• Greedy

– Shortest path, minimum spanning tree, …

• Divide and Conquer

– Divide the problem into smaller subproblems,

solve them, and combine into the overall solution

– Often done recursively

– Quick sort, merge sort are great examples

• Dynamic Programming

– Brute force through all possible solutions, storing solutions to

subproblems to avoid repeat computation

• Backtracking

– A clever form of exhaustive search

Spring 2015 24CSE373: Data Structures & Algorithms

• Backtracking is a technique used to solve problems with a large

search space, by systematically trying and eliminating possibilities.

• A standard example of backtracking would be going through a maze.

– At some point, you might have two options of which direction to go:

Junction

Portion A

P
o

rt
io

n
 B

Backtracking: Idea

Spring 2015 CSE373: Data Structures & Algorithms 25

Portion B

P
o

rt
io

n
 A

One strategy would be to try going

through Portion A of the maze.

If you get stuck before you find your

way out, then you "backtrack" to the

junction.

At this point in time you know that

Portion A will NOT lead you out of the

maze,

so you then start searching in

Portion B

Backtracking

Spring 2015 CSE373: Data Structures & Algorithms 26

• Clearly, at a single junction you could

have even more than 2 choices.

• The backtracking strategy says to try

each choice, one after the other,

– if you ever get stuck, "backtrack"

to the junction and try the next

choice.

• If you try all choices and never found

a way out, then there IS no solution to

the maze.

B

C

A

Backtracking

Spring 2015 CSE373: Data Structures & Algorithms 27

28

Backtracking (animation)

start ?

?

dead end

dead end

?
?

dead end

dead end

?

success!

dead end

Spring 2015 CSE373: Data Structures & Algorithms

Backtracking

• Dealing with the maze:

– From your start point, you will iterate through each possible

starting move.

– From there, you recursively move forward.

– If you ever get stuck, the recursion takes you back to where

you were, and you try the next possible move.

• Make sure you don't try too many possibilities,

– Mark which locations in the maze have been visited already so

that no location in the maze gets visited twice.

– (If a place has already been visited, there is no point in trying to

reach the end of the maze from there again.

Spring 2015 CSE373: Data Structures & Algorithms 29

The neat thing about coding up backtracking is that it can be done

recursively, without having to do all the bookkeeping at once.

– Instead, the stack of recursive calls does most of the

bookkeeping

– (i.e., keeps track of which locations we’ve tried so far.)

Backtracking

Spring 2015 CSE373: Data Structures & Algorithms 30

• Find an arrangement of 8 queens on a

single chess board such that no two

queens are attacking one another.

• In chess, queens can move all the way

down any row, column or diagonal (so

long as no pieces are in the way).

– Due to the first two restrictions, it's

clear that each row and column of the

board will have exactly one queen.

Backtracking: The 8 queens problem

Spring 2015 CSE373: Data Structures & Algorithms 31

The backtracking strategy is as follows:

1) Place a queen on the first available

square in row 1.

2) Move onto the next row, placing a

queen on the first available square

there (that doesn't conflict with the

previously placed queens).

3) Continue in this fashion until either:

a) You have solved the problem, or

b) You get stuck.

When you get stuck, remove the

queens that got you there, until you

get to a row where there is another

valid square to try.

Animated Example:

http://www.hbmeyer.de/backt

rack/achtdamen/eight.htm#u

p

Q
Q

Q
Q

Q Q

Continue…

Backtracking

Spring 2015 CSE373: Data Structures & Algorithms 32

http://www.hbmeyer.de/backtrack/achtdamen/eight.htm#up

• Another possible brute-force algorithm is generate all possible
permutations of the numbers 1 through 8 (there are 8! = 40,320),

– Use the elements of each permutation as possible positions in
which to place a queen on each row.

– Reject those boards with diagonal attacking positions.

• The backtracking algorithm does a bit better

– constructs the search tree by considering one row of the board at
a time, eliminating most non-solution board positions at a very
early stage in their construction.

– because it rejects row and diagonal attacks even on incomplete
boards, it examines only 15,720 possible queen placements.

• 15,720 is still a lot of possibilities to consider

– Sometimes we have no other choice but to do the best we can 

Backtracking – 8 queens Analysis

Spring 2015 CSE373: Data Structures & Algorithms 33

Algorithm Design Techniques

• Greedy

– Shortest path, minimum spanning tree, …

• Divide and Conquer

– Divide the problem into smaller subproblems,

solve them, and combine into the overall solution

– Often done recursively

– Quick sort, merge sort are great examples

• Dynamic Programming

– Brute force through all possible solutions, storing solutions to

subproblems to avoid repeat computation

• Backtracking

– A clever form of exhaustive search

Spring 2015 34CSE373: Data Structures & Algorithms

