CSE373: Data Structures & Algorithms

Lecture 12: Minimum Spanning Trees

Catie Baker
Spring 2015

Announcements

« Midterm & Homework 3 grades are out
« Homework 5 is out
— Due Wednesday May 27%
— Partner selection due Wednesday May 20%

Spring 2015 CSE373: Data Structures & Algorithms

Minimum Spanning Trees

The minimum-spanning-tree problem

— Given a weighted undirected graph, compute a spanning
tree of minimum weight

Given an undirected graph G=(V,E), find a graph G’=(V, E’) such
that:

— B’ is a subset of E

— [E'[=1]V]-1 G’ is a minimum
— G’ is connected spanning tree.

Spring 2015 CSE373: Data Structures & Algorithms 3

Two different approaches

Prim’s Algorithm Kruskals’s Algorithm
Almost identical to Dijkstra’s Completely different!

Spring 2015 CSE373: Data Structures & Algorithms 4

Prim’s Algorithm Idea

Idea: Grow a tree by picking a vertex from the unknown set that
has the smallest cost. Here cost = cost of the edge that
connects that vertex to the known set. Pick the vertex with the
smallest cost that connects “known” to “unknown.”

A node-based greedy algorithm
Builds MST by greedily adding nodes

Spring 2015 CSE373: Data Structures & Algorithms 5

Prim’s vs. Dijkstra’s

Recall:

Dijkstra picked the unknown vertex with smallest cost where
cost = distance to the source.

Prim’s pick the unknown vertex with smallest cost where

cost = distance from this vertex to the known set

(in other words, the cost of the smallest edge connecting this vertex
to the known set)

Otherwise identical ©

Spring 2015 CSE373: Data Structures & Algorithms 6

Prim’s Algorithm

1. For each node v, set v.cost = 00 and v.known = false

2. Choose any node v

a) Mark v as known

b) For each edge (wv,u) with weight w, set u. cost=w and

u.prev=v

3. While there are unknown nodes in the graph

a) Select the unknown node v with lowest cost

b) Mark v as known and add (v, v.prev) to output

c) Foreachedge (v,u) with weight w,

i1f(w < u.cost) {
u.cost = w;

u.prev = v;

Spring 2015 CSE373: Data Structures & Algorithms 7

Prim’s Example

vertex | known? cost prev
A ??
B ??
C ?7?
D ??
E ?7?
F ??
G ?7?

Spring 2015 CSE373: Data Structures & Algorithms 8

Prim’s Example

Spring 2015

vertex | known? cost prev

A Y 0
B 2 A
C 2 A
D 1 A
E ??
F ?7?
G ?7?

CSE373: Data Structures & Algorithms 9

Prim’s Example

vertex | known? cost prev
A Y 0
B 2 A
C 1 D
D Y 1 A
E 1 D
F 6 D
G 5 D
Spring 2015 CSE373: Data Structures & Algorithms 10

Prim’s Example

Spring 2015

vertex | known? cost prev

A Y 0

B 2 A
C Y 1 D
D Y 1 A
E 1 D
F 2 C
G 5 D

CSE373: Data Structures & Algorithms

Prim’s Example

vertex | known? cost prev

A Y 0

B 1 E
C Y 1 D
D Y 1 A
E Y 1 D
F 2 C
G 3 E

Spring 2015 CSE373: Data Structures & Algorithms

Prim’s Example

vertex | known? cost prev

A Y 0

B Y 1 E
C Y 1 D
D Y 1 A
E Y 1 D
F 2 C
G 3 E

Spring 2015 CSE373: Data Structures & Algorithms 13

Prim’s Example

vertex | known? cost prev

A Y 0

MmO |®m
<|<|=<|=<|=<
WIN[FRP|FR|[FR]|F
m|O|0O|>» |0 |m

Spring 2015 CSE373: Data Structures & Algorithms 14

Prim’s Example

vertex | known? cost prev

A Y 0

B Y 1 E
C Y 1 D
D Y 1 A
E Y 1 D
F Y 2 C
G Y 3 E

Spring 2015 CSE373: Data Structures & Algorithms

Analysis

» Correctness
— A bit tricky
— Intuitively similar to Dijkstra

* Run-time
— Same as Dijkstra
— O(JE|Log|V]) using a priority queue
« Costs/priorities are just edge-costs, not path-costs

Spring 2015 CSE373: Data Structures & Algorithms

16

Another Example

A cable company wants to connect five villages to their network
which currently extends to the town of Avonford. What is the
minimum length of cable needed?

Brinleigh 0 Cornwell

Avonford Donster

. Edan _
Spring 2015 CSE373: Data Structures & Algorithms

17

Prim’s Algorithm

Model the situation as a
graph and find the MST
that connects all the
villages (nodes).

Spring 2015 CSE373: Data Structures & Algorithms 18

Prim’s Algorithm

Spring 2015

CSE373: Data Structures & Algorithms

Select any vertex
A

Select the shortest
edge connected to
that vertex

AB 3

19

Prim’s Algorithm

Select the shortest
edge that connects
an unknown vertex to
any known vertex.

AE 4

Spring 2015 CSE373: Data Structures & Algorithms 20

Prim’s Algorithm

Select the shortest
edge that connects
an unknown vertex to
any known vertex.

ED 2

Spring 2015 CSE373: Data Structures & Algorithms 21

Prim’s Algorithm

Select the shortest
edge that connects
an unknown vertex to
any known vertex.

DC 4

Spring 2015 CSE373: Data Structures & Algorithms 22

Prim’s Algorithm

Select the shortest
edge that connects
an unknown vertex to
any known vertex.

EF 5

E

Spring 2015 CSE373: Data Structures & Algorithms 23

Prim’s Algorithm

Spring 2015

E

CSE373: Data Structures & Algorithms

All vertices have been
connected.

The solution is

AB 3
AE 4
ED 2
DC 4
EF 5

Total weight of tree: 18

24

Minimum Spanning Tree Algorithms

* Prim’s Algorithm for Minimum Spanning Tree
— Similar idea to Dijkstra’s Algorithm but for MSTSs.
— Both based on expanding cloud of known vertices
(basically using a priority queue instead of a DFS stack)

« Kruskal’'s Algorithm for Minimum Spanning Tree

— Another, but different, greedy MST algorithm.
— Uses the Union-Find data structure.

Spring 2015 CSE373: Data Structures & Algorithms

25

Kruskal’s Algorithm

Idea: Grow a forest out of edges that do not create a cycle. Pick an
edge with the smallest weight.

An edge-based greedy algorithm
Builds MST by greedily adding edges

G=(V,E)

Spring 2015 CSE373: Data Structures & Algorithms 26

Kruskal’s Algorithm Pseudocode

1. Sort edges by weight (better: put in min-heap)
2. Each node in its own set
3. While output size < |V|-1

— Consider next smallest edge (u,v)

— if £ind (u) and £ind (v) indicate u and v are in different
sets
. output (u,wv)

. union (find(u) ,find(v))

Recall invariant:
u and v in same set if and only if connected in output-so-far

Spring 2015 CSE373: Data Structures & Algorithms 27

Kruskal’s Example

Output:

Edges in sorted order:
1. (AD), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (AC)

3. (E,GQ)

5. (D,G), (B,D)

6. (D,F)

10: (F,G)

Note: At each step, the union/find sets are the trees in the forest

Spring 2015

CSE373: Data Structures & Algorithms

28

Kruskal’s Example

Output: (A,D)

Edges in sorted order:
1. (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (AC)

3. (E,GQ)

5. (D,G), (B,D)

6. (D,F)

10: (F,G)

Note: At each step, the union/find sets are the trees in the forest

Spring 2015

CSE373: Data Structures & Algorithms

29

Kruskal’s Example

Edges in sorted order:
1. (AD), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (AC)

3. (E,GQ)

5. (D,G), (B,D)

6. (D,F)

10: (F,G)

Output: (A,D), (C,D)

Note: At each step, the union/find sets are the trees in the forest

Spring 2015

CSE373: Data Structures & Algorithms

30

Kruskal’s Example

Edges in sorted order:
1. (AD), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (AC)

3. (E,GQ)

5. (D,G), (B,D)

6. (D,F)

10: (F,G)

Output: (A,D), (C,D), (B,E)

Note: At each step, the union/find sets are the trees in the forest

Spring 2015

CSE373: Data Structures & Algorithms

31

Kruskal’s Example

Edges in sorted order:
1. (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (AC)

3. (E,GQ)

5. (D,G), (B,D)

6. (D,F)

10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest

Spring 2015

CSE373: Data Structures & Algorithms

32

Kruskal’s Example

Edges in sorted order:
1. (A,D), (C,D), (B,E), (D,E)
2. (A,B), (C,F), (AC)

3. (E,GQ)

5. (D,G), (B,D)

6: (D,F)

10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest

Spring 2015

CSE373: Data Structures & Algorithms

33

Kruskal’s Example

Edges in sorted order:
1. (A,D), (C,D), (B,E), (D,E)
2. (A,B), (C,F), (AC)

3. (E,GQ)

5. (D,G), (B,D)

6: (D,F)

10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest

Spring 2015

CSE373: Data Structures & Algorithms

34

Kruskal’s Example

Edges in sorted order:
1. (A,D), (C,D), (B,E), (D,E)
2. (A,B), (C,F), (A,C

3. (E,GQ)

5. (D,G), (B,D)

6: (D,F)

10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest

Spring 2015

CSE373: Data Structures & Algorithms

35

Kruskal’s Example

Edges in sorted order:
1. (AD), (C,D), (B,E), (D,E)
2. (A,B), (C,F), (A,C

3: (E,G)
5
6

. (D,G), (B,D)
. (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F), (E,G)

Note: At each step, the union/find sets are the trees in the forest

Spring 2015 CSE373: Data Structures & Algorithms 36

Kruskal’s Algorithm Analysis

ldea: Grow a forest out of edges that do not grow a cycle, just like for
the spanning tree problem.

— But now consider the edges in order by weight

So:
— Sort edges: O(|E|1og |E|) (next course topic)

— Iterate through edges using union-find for cycle detection
almost O(|E|)

Somewhat better:
— Floyd’s algorithm to build min-heap with edges O(|E|)

— Iterate through edges using union-find for cycle detection and
deleteMin to get next edge O(|E|1og|E|)

— Not better worst-case asymptotically, but often stop long
before considering all edges.

Spring 2015 CSE373: Data Structures & Algorithms 37

Kruskal’'s Algorithm

Spring 2015

CSE373: Data Structures & Algorithms

List the edges in
order of size:

ED 2
AB 3
AE 4
CD 4
BC 5
EF 5
CF 6
AF 7
BF 8
CF 8

38

Kruskal’'s Algorithm

Spring 2015

CSE373: Data Structures & Algorithms

Select the edge
with min cost

ED 2

39

Kruskal’'s Algorithm

Spring 2015

CSE373: Data Structures & Algorithms

Select the next
minimum cost
edge that does not
create a cycle

ED 2
AB 3

40

Kruskal’'s Algorithm

Spring 2015

CSE373: Data Structures & Algorithms

Select the next
minimum cost
edge that does not
create a cycle

ED 2
AB 3
CD 4 (or AE 4)

41

Kruskal’'s Algorithm

Spring 2015

CSE373: Data Structures & Algorithms

Select the next
minimum cost
edge that does not
create a cycle

42

Kruskal’'s Algorithm

Spring 2015

E

CSE373: Data Structures & Algorithms

Select the next
minimum cost
edge that does not
create a cycle

ED 2
AB 3
CD 4
AE 4
BC 5 - forms a cycle
EF 5

43

Kruskal’'s Algorithm

Spring 2015

E

CSE373: Data Structures & Algorithms

All vertices have been
connected.

The solution is

Total weight of tree: 18

44

Done with graph algorithms!

Next lecture...

e Sorting

« More sorting

« Even more sorting

©

Spring 2015 CSE373: Data Structures & Algorithms

45

