

CSE 373: Data Structures & Algorithms Lecture 16: Topological Sort / Graph Traversals

Catie Baker Spring 2015

Announcements

- Midterm
 - This Wednesday in class
 - Closed books, closed notes
 - Practice midterms posted online
- Homework 4
 - Partner Selection due this Wednesday
 - Project due next Wednesday

Graphs

- A graph is a formalism for representing relationships among items
 - Very general definition because very general concept
- · A graph is a pair

$$G = (V, E)$$

A set of vertices, also known as nodes

$$V = \{v_1, v_2, ..., v_n\}$$

A set of edges

$$E = \{e_1, e_2, ..., e_m\}$$

- Each edge e_i is a pair of vertices
 (v_i, v_k)
- An edge "connects" the vertices
- Graphs can be directed or undirected

Density / Sparsity

- Recall: In an undirected graph, $0 \le |E| < |V|^2$
- Recall: In a directed graph: $0 \le |E| \le |V|^2$
- So for any graph, $O(|E|+|V|^2)$ is $O(|V|^2)$
- Another fact: If an undirected graph is *connected*, then $|V|-1 \le |E|$
- Because |E| is often much smaller than its maximum size, we do not always approximate |E| as $O(|V|^2)$
 - This is a correct bound, it just is often not tight
 - If it is tight, i.e., |E| is $\Theta(|V|^2)$ we say the graph is dense
 - More sloppily, dense means "lots of edges"
 - If |E| is O(|V|) we say the graph is sparse
 - More sloppily, sparse means "most possible edges missing"

What is the Data Structure?

- So graphs are really useful for lots of data and questions
 - For example, "what's the lowest-cost path from x to y"
- But we need a data structure that represents graphs
- The "best one" can depend on:
 - Properties of the graph (e.g., dense versus sparse)
 - The common queries (e.g., "is (u,v) an edge?" versus
 "what are the neighbors of node u?")
- So we'll discuss the two standard graph representations
 - Adjacency Matrix and Adjacency List
 - Different trade-offs, particularly time versus space

Adjacency Matrix

- Assign each node a number from 0 to |V|-1
- A | V | x | V | matrix (i.e., 2-D array) of Booleans (or 1 vs. 0)
 - If M is the matrix, then M[u][v] being true
 means there is an edge from u to v

Adjacency Matrix Properties

0 1 2 3

0

- Running time to:
 - Get a vertex's out-edges: O(|V|)
 - Get a vertex's in-edges: O(|V|)
 - Decide if some edge exists: O(1)
 - Insert an edge: O(1)
 - Delete an edge: *O*(1)

U	_		
F	Т	H	F
Т	F	Т	F
F	Т	F	Т
F	F	F	F

- Space requirements:
 - $|V|^2$ bits
- Best for sparse or dense graphs?
 - Best for dense graphs

Adjacency Matrix Properties

- How will the adjacency matrix vary for an undirected graph?
 - Undirected will be symmetric around the diagonal
- How can we adapt the representation for weighted graphs?
 - Instead of a Boolean, store a number in each cell
 - Need some value to represent 'not an edge'
 - In some situations, 0 or -1 works

Adjacency List

- Assign each node a number from 0 to |V|-1
- An array of length |V| in which each entry stores a list of all adjacent vertices (e.g., linked list)

Adjacency List Properties

- Running time to:
 - Get all of a vertex's out-edges:
 - O(d) where d is out-degree of vertex
 - Get all of a vertex's in-edges:
 - O(|E|) (but could keep a second adjacency list for this!)
 - Decide if some edge exists:
 - O(d) where d is out-degree of source
 - Insert an edge:
 - O(1) (unless you need to check if it's there)
 - Delete an edge:
 - O(d) where d is out-degree of source
- Space requirements:

Good for sparse graphs

- O(|V|+|E|)

Algorithms

Okay, we can represent graphs

Now we'll implement some useful and non-trivial algorithms

- Topological sort: Given a DAG, order all the vertices so that every vertex comes before all of its neighbors
- Shortest paths: Find the shortest or lowest-cost path from x to y
 - Related: Determine if there even is such a path

Topological Sort

Disclaimer: Do not use for official advising purposes!

Problem: Given a DAG **G=(V,E)**, output all vertices in an order such that no vertex appears before another vertex that has an edge to it

One example output:

126, 142, 143, 374, 373, 417, 410, 413, XYZ, 415

Questions and comments

- Why do we perform topological sorts only on DAGs?
 - Because a cycle means there is no correct answer
- Is there always a unique answer?
 - No, there can be 1 or more answers; depends on the graph

 $\mathbf{0}$

- Do some DAGs have exactly 1 answer?
 - Yes, including all lists

Uses

- Figuring out how to graduate
- Computing an order in which to recompute cells in a spreadsheet
- Determining an order to compile files using a Makefile
- In general, taking a dependency graph and finding an order of execution

• ...

A First Algorithm for Topological Sort

- 1. Label ("mark") each vertex with its in-degree
 - Think "write in a field in the vertex"
 - Could also do this via a data structure (e.g., array) on the side
- 2. While there are vertices not yet output:
 - a) Choose a vertex **v** with labeled with in-degree of 0
 - b) Output **v** and *conceptually* remove it from the graph
 - c) For each vertex **u** adjacent to **v** (i.e. **u** such that (**v**,**u**) in **E**), decrement the in-degree of **u**

Example

Output:

Node: 126 142 143 374 373 410 413 415 417 XYZ

Removed?

In-degree: 0 0 2 1 1 1 1 1 3

Example

Node: 126 142 143 374 373 410 413 415 417 XYZ

Removed? x

In-degree: 0 0 2 1 1 1 1 1 3

1

Output:

142

126

Node: 126 142 143 374 373 410 413 415 417 XYZ

Removed? x x

In-degree: 0 0 2 1 1 1 1 1 3

1

0

CSE 417

Node:	126	142	143	374	373	410	413	415	417	XYZ
Removed?	X	X	X	X	X				X	
In-degree:	0	0	2	1	1	1	1	1	1	3
			1	0	0	0	0	0	0	2
			0							

Node:	126	142	143	374	373	410	413	415	417	XYZ
Removed?	X	X	X	X	X	X			X	
In-degree:	0	0	2	1	1	1	1	1	1	3
			1	0	0	0	0	0	0	2
			0							1

Node:	126	142	143	374	373	410	413	415	417	XYZ	
Removed?	X	X	X	X	X	X	X		X		
In-degree:	0	0	2	1	1	1	1	1	1	3	
			1	0	0	0	0	0	0	2	
			0							1	
Spring 2015	CSE373: Data Structures & Algorithms								0		

Node:	126	142	143	374	373	410	413	415	417	XYZ
Removed?	X	X	X	X	X	X	X		X	X
In-degree:	0	0	2	1	1	1	1	1	1	3
			1	0	0	0	0	0	0	2
			0							1
Spring 2015			CS	E373: I	Oata Stru	ictures &	& Algori	ithms		0

Notice

- Needed a vertex with in-degree 0 to start
 - Will always have at least 1 because no cycles
- Ties among vertices with in-degrees of 0 can be broken arbitrarily
 - Can be more than one correct answer, by definition, depending on the graph

Running time?

```
labelEachVertexWithItsInDegree();
for(ctr=0; ctr < numVertices; ctr++){
  v = findNewVertexOfDegreeZero();
  put v next in output
  for each w adjacent to v
    w.indegree--;
}</pre>
```

- What is the worst-case running time?
 - Initialization O(|V|+|E|) (assuming adjacency list)
 - Sum of all find-new-vertex $O(|V|^2)$ (because each O(|V|))
 - Sum of all decrements O(|E|) (assuming adjacency list)
 - So total is $O(|V|^2)$ not good for a sparse graph!

Doing better

The trick is to avoid searching for a zero-degree node every time!

- Keep the "pending" zero-degree nodes in a list, stack, queue, bag, table, or something
- Order we process them affects output but not correctness or efficiency provided add/remove are both O(1)

Using a queue:

- 1. Label each vertex with its in-degree, enqueue 0-degree nodes
- 2. While queue is not empty
 - a) **v** = dequeue()
 - b) Output **v** and remove it from the graph
 - c) For each vertex **u** adjacent to **v** (i.e. **u** such that (**v**,**u**) in **E**), decrement the in-degree of **u**, if new degree is 0, enqueue it

Running time?

```
labelAllAndEnqueueZeros();
for(ctr=0; ctr < numVertices; ctr++){
   v = dequeue();
   put v next in output
   for each w adjacent to v {
      w.indegree--;
      if(w.indegree==0)
        enqueue(v);
   }
}</pre>
```

- What is the worst-case running time?
 - Initialization: O(|V|+|E|) (assuming adjacency list)
 - Sum of all enqueues and dequeues: O(|V|)
 - Sum of all decrements: O(|E|) (assuming adjacency list)
 - So total is O(|E| + |V|) much better for sparse graph!

Graph Traversals

Next problem: For an arbitrary graph and a starting node **v**, find all nodes *reachable* from **v** (i.e., there exists a path from **v**)

- Possibly "do something" for each node
- Examples: print to output, set a field, etc.
- Subsumed problem: Is an undirected graph connected?
- Related but different problem: Is a directed graph strongly connected?
 - Need cycles back to starting node

Basic idea:

- Keep following nodes
- But "mark" nodes after visiting them, so the traversal terminates and processes each reachable node exactly once

Abstract Idea

```
traverseGraph (Node start) {
   Set pending = emptySet()
   pending.add(start)
   mark start as visited
   while (pending is not empty) {
     next = pending.remove()
     for each node u adjacent to next
        if(u is not marked) {
          mark u
          pending.add(u)
```

Running Time and Options

- Assuming add and remove are O(1), entire traversal is O(|E|)
 - Use an adjacency list representation
- The order we traverse depends entirely on add and remove
 - Popular choice: a stack "depth-first graph search" "DFS"
 - Popular choice: a queue "breadth-first graph search" "BFS"
- DFS and BFS are "big ideas" in computer science
 - Depth: recursively explore one part before going back to the other parts not yet explored
 - Breadth: explore areas closer to the start node first

Example: Depth First Search

A tree is a graph and DFS and BFS are particularly easy to "see"


```
DFS(Node start) {
   mark and process start
   for each node u adjacent to start
    if u is not marked
       DFS(u)
}
```

- ABDECFGH
- Exactly what we called a "pre-order traversal" for trees
 - The marking is because we support arbitrary graphs and we want to process each node exactly once

Example: Another Depth First Search

A tree is a graph and DFS and BFS are particularly easy to "see"


```
DFS2(Node start) {
  initialize stack s and push start
  mark start as visited
  while(s is not empty) {
    next = s.pop() // and "process"
    for each node u adjacent to next
      if(u is not marked)
      mark u and push onto s
  }
}
```

- ACFHGBED
- A different but perfectly fine traversal

Example: Breadth First Search

A tree is a graph and DFS and BFS are particularly easy to "see"


```
BFS(Node start) {
  initialize queue q and enqueue start
  mark start as visited
  while(q is not empty) {
    next = q.dequeue() // and "process"
    for each node u adjacent to next
      if(u is not marked)
        mark u and enqueue onto q
  }
}
```

- ABCDEFGH
- A "level-order" traversal

Comparison

- Breadth-first always finds shortest paths, i.e., "optimal solutions"
 - Better for "what is the shortest path from x to y"
- But depth-first can use less space in finding a path
 - If longest path in the graph is p and highest out-degree is d
 then DFS stack never has more than d*p elements
 - But a queue for BFS may hold O(|V|) nodes
- A third approach:
 - Iterative deepening (IDFS):
 - Try DFS but disallow recursion more than K levels deep
 - If that fails, increment **K** and start the entire search over
 - Like BFS, finds shortest paths. Like DFS, less space.

Saving the Path

- Our graph traversals can answer the reachability question:
 - "Is there a path from node x to node y?"
- But what if we want to actually output the path?
 - Like getting driving directions rather than just knowing it's possible to get there!
- How to do it:
 - Instead of just "marking" a node, store the previous node along the path (when processing u causes us to add v to the search, set v.path field to be u)
 - When you reach the goal, follow path fields back to where you started (and then reverse the answer)
 - If just wanted path *length*, could put the integer distance at each node instead

Example using BFS

What is a path from Seattle to Tyler

- Remember marked nodes are not re-enqueued
- Note shortest paths may not be unique

Single source shortest paths

- Done: BFS to find the minimum path length from v to u in O(|E|+|V|)
- Actually, can find the minimum path length from v to every node
 - Still O(|E|+|V|)
 - No faster way for a "distinguished" destination in the worst-case
- Now: Weighted graphs

Given a weighted graph and node **v**, find the minimum-cost path from **v** to every node

As before, asymptotically no harder than for one destination

Applications

- Driving directions
- Cheap flight itineraries
- Network routing
- Critical paths in project management

Not as easy as BFS

Why BFS won't work: Shortest path may not have the fewest edges

Annoying when this happens with costs of flights

We will assume there are no negative weights

- Problem is ill-defined if there are negative-cost cycles
- Today's algorithm is wrong if edges can be negative
 - There are other, slower (but not terrible) algorithms

Dijkstra's Algorithm

- Named after its inventor Edsger Dijkstra (1930-2002)
 - Truly one of the "founders" of computer science;
 this is just one of his many contributions
 - Many people have a favorite Dijkstra story, even if they never met him

Dijkstra's Algorithm

- The idea: reminiscent of BFS, but adapted to handle weights
 - Grow the set of nodes whose shortest distance has been computed
 - Nodes not in the set will have a "best distance so far"
 - A priority queue will turn out to be useful for efficiency
- An example of a greedy algorithm
 - A series of steps
 - At each one the locally optimal choice is made