
CSE 373: Data Structures & Algorithms

Lecture 16: Topological Sort / Graph Traversals

Catie Baker

Spring 2015



Announcements

• Midterm

– This Wednesday in class

– Closed books, closed notes

– Practice midterms posted online

• Homework 4

– Partner Selection due this Wednesday

– Project due next Wednesday

Spring 2015 2CSE373: Data Structures & Algorithms



Graphs

• A graph is a formalism for representing relationships among items

– Very general definition because very general concept

• A graph is a pair

G = (V,E)

– A set of vertices, also known as nodes

V = {v1,v2,…,vn}

– A set of edges

E = {e1,e2,…,em}

• Each edge ei is a pair of vertices 

(vj,vk)

• An edge “connects” the vertices

• Graphs can be directed or undirected

Spring 2015 3CSE373: Data Structures & Algorithms

Han

Leia

Luke

V = {Han,Leia,Luke}

E = {(Luke,Leia), 

(Han,Leia), 

(Leia,Han)}



Density / Sparsity

• Recall: In an undirected graph, 0 ≤ |E| < |V|2

• Recall: In a directed graph: 0 ≤ |E| ≤ |V|2

• So for any graph, O(|E|+|V|2) is O(|V|2)

• Another fact: If an undirected graph is connected, then |V|-1 ≤ |E|

• Because |E| is often much smaller than its maximum size, we do not 

always approximate |E| as O(|V|2)

– This is a correct bound, it just is often not tight

– If it is tight, i.e., |E| is (|V|2) we say the graph is dense

• More sloppily, dense means “lots of edges”

– If |E| is O(|V|) we say the graph is sparse

• More sloppily, sparse means “most possible edges missing”

Spring 2015 4CSE373: Data Structures & Algorithms



What is the Data Structure?

• So graphs are really useful for lots of data and questions 

– For example, “what’s the lowest-cost path from x to y”

• But we need a data structure that represents graphs

• The “best one” can depend on:

– Properties of the graph (e.g., dense versus sparse)

– The common queries (e.g., “is (u,v) an edge?” versus 

“what are the neighbors of node u?”)

• So we’ll discuss the two standard graph representations

– Adjacency Matrix and Adjacency List

– Different trade-offs, particularly time versus space

Spring 2015 5CSE373: Data Structures & Algorithms



Adjacency Matrix

• Assign each node a number from 0 to |V|-1

• A |V| x |V| matrix (i.e., 2-D array) of Booleans (or 1 vs. 0)

– If M is the matrix, then M[u][v] being true

means there is an edge from u to v

Spring 2015 6CSE373: Data Structures & Algorithms

A(0)

B(1)

C(2)

D(3)

0 1 2

0

1

2

3

3

T

T

T T

F F F

F F F

F F

F F F F



Adjacency Matrix Properties

• Running time to:

– Get a vertex’s out-edges: 

– Get a vertex’s in-edges: 

– Decide if some edge exists: 

– Insert an edge:

– Delete an edge: 

• Space requirements:

– |V|2 bits

• Best for sparse or dense graphs?

– Best for dense graphs

Spring 2015 CSE373: Data Structures & Algorithms 7

0 1 2

0

1

2

3

3

T

T

T T

F F F

F F F

F F

F F F F

O(|V|)

O(|V|)

O(1)

O(1)

O(1)



Adjacency Matrix Properties

• How will the adjacency matrix vary for an undirected graph?

– Undirected will be symmetric around the diagonal

• How can we adapt the representation for weighted graphs?

– Instead of a Boolean, store a number in each cell

– Need some value to represent ‘not an edge’

• In some situations, 0 or -1 works

Spring 2015 CSE373: Data Structures & Algorithms 8



Adjacency List

• Assign each node a number from 0 to |V|-1

• An array of length |V| in which each entry stores a list of all 

adjacent vertices (e.g., linked list)

Spring 2015 9CSE373: Data Structures & Algorithms

0

1

2

3

1 /

0 /

3 1 /

/

A(0)

B(1)

C(2)

D(3)



Adjacency List Properties

• Running time to:

– Get all of a vertex’s out-edges: 

O(d) where d is out-degree of vertex

– Get all of a vertex’s in-edges:

O(|E|) (but could keep a second adjacency list for this!)

– Decide if some edge exists: 

O(d) where d is out-degree of source

– Insert an edge: 

O(1) (unless you need to check if it’s there)

– Delete an edge: 

O(d) where d is out-degree of source

• Space requirements:

– O(|V|+|E|)

Spring 2015 CSE373: Data Structures & Algorithms 10

0

1

2

3

1 /

0 /

3 1 /

/

• Good for sparse graphs



Algorithms

Okay, we can represent graphs

Now we’ll implement some useful and non-trivial algorithms

• Topological sort: Given a DAG, order all the vertices so that 

every vertex comes before all of its neighbors

• Shortest paths: Find the shortest or lowest-cost path from x to y

– Related: Determine if there even is such a path

Spring 2015 11CSE373: Data Structures & Algorithms



Topological Sort

Problem: Given a DAG G=(V,E), output all vertices in an order such 

that no vertex appears before another vertex that has an edge to it

One example output:

126, 142, 143, 374, 373, 417, 410, 413, XYZ, 415

Spring 2015 12CSE373: Data Structures & Algorithms

Disclaimer: Do not use for official 

advising purposes !

CSE 142 CSE 143

CSE 374

CSE 373

CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ



Questions and comments

• Why do we perform topological sorts only on DAGs?

– Because a cycle means there is no correct answer

• Is there always a unique answer?

– No, there can be 1 or more answers; depends on the graph

• Do some DAGs have exactly 1 answer?

– Yes, including all lists 

• Terminology: A DAG represents a partial order and a topological 

sort produces a total order that is consistent with it

Spring 2015 13CSE373: Data Structures & Algorithms

0

1

3

2

4



Uses

• Figuring out how to graduate

• Computing an order in which to recompute cells in a spreadsheet

• Determining an order to compile files using a Makefile

• In general, taking a dependency graph and finding an order of 

execution 

• …

Spring 2015 14CSE373: Data Structures & Algorithms



A First Algorithm for Topological Sort

1. Label (“mark”) each vertex with its in-degree

– Think “write in a field in the vertex”

– Could also do this via a data structure (e.g., array) on the side

2. While there are vertices not yet output:

a) Choose a vertex v with labeled with in-degree of 0

b) Output v and conceptually remove it from the graph

c) For each vertex u adjacent to v (i.e. u such that (v,u) in E), 

decrement the in-degree of u

Spring 2015 15CSE373: Data Structures & Algorithms



Example Output: 

Spring 2015 16CSE373: Data Structures & Algorithms

Node:          126 142  143  374  373  410  413  415  417  XYZ

Removed?

In-degree:    0       0     2      1       1       1     1      1      1      3

CSE 142 CSE 143

CSE 374

CSE 373

CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ



Example Output: 

126

Spring 2015 17CSE373: Data Structures & Algorithms

Node:          126 142  143  374  373  410  413  415  417  XYZ

Removed?   x

In-degree:    0       0     2      1       1       1     1      1      1      3

1

CSE 142 CSE 143

CSE 374

CSE 373

CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ



Example Output: 

126

142

Spring 2015 18CSE373: Data Structures & Algorithms

Node:          126 142  143  374  373  410  413  415  417  XYZ

Removed?   x       x

In-degree:    0       0     2      1       1       1     1      1      1      3

1

0

CSE 142 CSE 143

CSE 374

CSE 373

CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ



Example Output: 

126

142

143

Spring 2015 19CSE373: Data Structures & Algorithms

Node:          126 142  143  374  373  410  413  415  417  XYZ

Removed?   x       x x

In-degree:    0       0     2      1       1       1     1      1      1      3

1      0       0

0

CSE 142 CSE 143

CSE 374

CSE 373

CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ



Example Output: 

126

142

143

374

Spring 2015 20CSE373: Data Structures & Algorithms

Node:          126 142  143  374  373  410  413  415  417  XYZ

Removed?   x       x x x

In-degree:    0       0     2      1       1       1     1      1      1      3

1      0       0                                      2

0

CSE 142 CSE 143

CSE 374

CSE 373

CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ



Example Output: 

126

142

143

374

373

Spring 2015 21CSE373: Data Structures & Algorithms

Node:          126 142  143  374  373  410  413  415  417  XYZ

Removed?   x       x x x x

In-degree:    0       0     2      1       1       1     1      1      1      3

1      0       0       0     0      0      0      2

0

CSE 142 CSE 143

CSE 374

CSE 373

CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ



Example Output: 

126

142

143

374

373

417

Spring 2015 22CSE373: Data Structures & Algorithms

Node:          126 142  143  374  373  410  413  415  417  XYZ

Removed?   x       x x x x x

In-degree:    0       0     2      1       1       1     1      1      1      3

1      0       0       0     0      0      0      2

0

CSE 142 CSE 143

CSE 374

CSE 373

CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ



Example Output: 

126

142

143

374

373

417

410

Spring 2015 23CSE373: Data Structures & Algorithms

Node:          126 142  143  374  373  410  413  415  417  XYZ

Removed?   x       x x x x x x

In-degree:    0       0     2      1       1       1     1      1      1      3

1      0       0       0     0      0      0      2

0                                                       1

CSE 142 CSE 143

CSE 374

CSE 373

CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ



Example Output: 

126

142

143

374

373

417

410

413

Spring 2015 24CSE373: Data Structures & Algorithms

Node:          126 142  143  374  373  410  413  415  417  XYZ

Removed?   x       x x x x x x x

In-degree:    0       0     2      1       1       1     1      1      1      3

1      0       0       0     0      0      0      2

0                                                       1

0

CSE 142 CSE 143

CSE 374

CSE 373

CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ



Example Output: 

126

142

143

374

373

417

410

413

XYZ

Spring 2015 25CSE373: Data Structures & Algorithms

Node:          126 142  143  374  373  410  413  415  417  XYZ

Removed?   x       x x x x x x x x

In-degree:    0       0     2      1       1       1     1      1      1      3

1      0       0       0     0      0      0      2

0                                                       1

0

CSE 142 CSE 143

CSE 374

CSE 373

CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ



Example Output: 

126

142

143

374

373

417

410

413

XYZ

415

Spring 2015 26CSE373: Data Structures & Algorithms

Node:          126 142  143  374  373  410  413  415  417  XYZ

Removed?   x       x x x x x x x x x

In-degree:    0       0     2      1       1       1     1      1      1      3

1      0       0       0     0      0      0      2

0                                                       1

0

CSE 142 CSE 143

CSE 374

CSE 373

CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ



Notice

• Needed a vertex with in-degree 0 to start

– Will always have at least 1 because no cycles

• Ties among vertices with in-degrees of 0 can be broken 

arbitrarily

– Can be more than one correct answer, by definition, 

depending on the graph

Spring 2015 27CSE373: Data Structures & Algorithms



Running time?

• What is the worst-case running time?

– Initialization O(|V|+|E|) (assuming adjacency list)

– Sum of all find-new-vertex O(|V|2) (because each O(|V|))

– Sum of all decrements O(|E|) (assuming adjacency list)

– So total is O(|V|2) – not good for a sparse graph!

Spring 2015 28CSE373: Data Structures & Algorithms

labelEachVertexWithItsInDegree();

for(ctr=0; ctr < numVertices; ctr++){

v = findNewVertexOfDegreeZero();

put v next in output

for each w adjacent to v

w.indegree--;

}



Doing better

The trick is to avoid searching for a zero-degree node every time!

– Keep the “pending” zero-degree nodes in a list, stack, 

queue, bag, table, or something

– Order we process them affects output but not correctness or 

efficiency provided add/remove are both O(1)

Using a queue:

1. Label each vertex with its in-degree, enqueue 0-degree nodes

2. While queue is not empty

a) v = dequeue()

b) Output v and remove it from the graph

c) For each vertex u adjacent to v (i.e. u such that (v,u) in E), 

decrement the in-degree of u, if new degree is 0, enqueue it

Spring 2015 29CSE373: Data Structures & Algorithms



Running time?

Spring 2015 30CSE373: Data Structures & Algorithms

• What is the worst-case running time?

– Initialization: O(|V|+|E|) (assuming adjacency list)

– Sum of all enqueues and dequeues: O(|V|)

– Sum of all decrements: O(|E|) (assuming adjacency list)

– So total is O(|E| + |V|) – much better for sparse graph!

labelAllAndEnqueueZeros();

for(ctr=0; ctr < numVertices; ctr++){

v = dequeue();

put v next in output

for each w adjacent to v {

w.indegree--;

if(w.indegree==0) 

enqueue(v);

}

}



Graph Traversals

Next problem: For an arbitrary graph and a starting node v, find all 

nodes reachable from v (i.e., there exists a path from v)

– Possibly “do something” for each node 

– Examples: print to output, set a field, etc.

• Subsumed problem: Is an undirected graph connected?

• Related but different problem: Is a directed graph strongly 

connected?

– Need cycles back to starting node

Basic idea: 

– Keep following nodes

– But “mark” nodes after visiting them, so the traversal terminates 

and processes each reachable node exactly once

Spring 2015 31CSE373: Data Structures & Algorithms



Abstract Idea

Spring 2015 32CSE373: Data Structures & Algorithms

traverseGraph(Node start) {

Set pending = emptySet()

pending.add(start)

mark start as visited

while(pending is not empty) {

next = pending.remove()

for each node u adjacent to next

if(u is not marked) {

mark u

pending.add(u)

}

}

}



Running Time and Options

• Assuming add and remove are O(1), entire traversal is O(|E|)

– Use an adjacency list representation

• The order we traverse depends entirely on add and remove

– Popular choice: a stack  “depth-first graph search”  “DFS”

– Popular choice: a queue “breadth-first graph search” “BFS”

• DFS and BFS are “big ideas” in computer science

– Depth: recursively explore one part before going back to the 

other parts not yet explored

– Breadth: explore areas closer to the start node first

Spring 2015 33CSE373: Data Structures & Algorithms



Example: Depth First Search

• A tree is a graph and DFS and BFS are particularly easy to “see” 

Spring 2015 34CSE373: Data Structures & Algorithms

A

B

D E

C

F

HG

DFS(Node start) {

mark and process start

for each node u adjacent to start

if u is not marked

DFS(u)

}

•

• Exactly what we called a “pre-order traversal” for trees

– The marking is because we support arbitrary graphs and we 

want to process each node exactly once

B D E C F G HA



Example: Another Depth First Search

• A tree is a graph and DFS and BFS are particularly easy to “see” 

Spring 2015 35CSE373: Data Structures & Algorithms

A

B

D E

C

F

HG

DFS2(Node start) {

initialize stack s and push start

mark start as visited

while(s is not empty) {

next = s.pop() // and “process”

for each node u adjacent to next

if(u is not marked)

mark u and push onto s

}

}

•

• A different but perfectly fine traversal

C F H G B E DA



Example: Breadth First Search

• A tree is a graph and DFS and BFS are particularly easy to “see” 

Spring 2015 36CSE373: Data Structures & Algorithms

A

B

D E

C

F

HG

BFS(Node start) {

initialize queue q and enqueue start

mark start as visited

while(q is not empty) {

next = q.dequeue() // and “process”

for each node u adjacent to next

if(u is not marked)

mark u and enqueue onto q

}

}

•

• A “level-order” traversal

B C D E F G HA



Comparison

• Breadth-first always finds shortest paths, i.e., “optimal solutions”

– Better for “what is the shortest path from x to y”

• But depth-first can use less space in finding a path

– If longest path in the graph is p and highest out-degree is d

then DFS stack never has more than d*p elements

– But a queue for BFS may hold O(|V|) nodes

• A third approach:

– Iterative deepening (IDFS): 

• Try DFS but disallow recursion more than K levels deep

• If that fails, increment K and start the entire search over

– Like BFS, finds shortest paths.  Like DFS, less space.

Spring 2015 37CSE373: Data Structures & Algorithms



Saving the Path

• Our graph traversals can answer the reachability question:

– “Is there a path from node x to node y?”

• But what if we want to actually output the path?

– Like getting driving directions rather than just knowing it’s 

possible to get there!

• How to do it: 

– Instead of just “marking” a node, store the previous node 

along the path (when processing u causes us to add v to the 
search, set v.path field to be u)

– When you reach the goal, follow path fields back to where 

you started (and then reverse the answer)

– If just wanted path length, could put the integer distance at 

each node instead

Spring 2015 38CSE373: Data Structures & Algorithms



Example using BFS

Spring 2015 39CSE373: Data Structures & Algorithms

Seattle

San Francisco

Dallas

Salt Lake City

What is a path from Seattle to Tyler

– Remember marked nodes are not re-enqueued

– Note shortest paths may not be unique

Chicago

Tyler

1

1

1

2

3

0



Single source shortest paths

• Done: BFS to find the minimum path length from v to u in O(|E|+|V|)

• Actually, can find the minimum path length from v to every node

– Still O(|E|+|V|)

– No faster way for a “distinguished” destination in the worst-case

• Now:  Weighted graphs 

Given a weighted graph and node v, 

find the minimum-cost path from v to every node 

• As before, asymptotically no harder than for one destination

Spring 2015 40CSE373: Data Structures & Algorithms



Applications

• Driving directions

• Cheap flight itineraries

• Network routing

• Critical paths in project management

Spring 2015 41CSE373: Data Structures & Algorithms



Not as easy as BFS

Why BFS won’t work: Shortest path may not have the fewest edges

– Annoying when this happens with costs of flights

Spring 2015 42CSE373: Data Structures & Algorithms

500

100
100 100

100

We will assume there are no negative weights

• Problem is ill-defined if there are negative-cost cycles

• Today’s algorithm is wrong if edges can be negative

– There are other, slower (but not terrible) algorithms

7

10 5

-11



Dijkstra’s Algorithm

• Named after its inventor Edsger Dijkstra (1930-2002)

– Truly one of the “founders” of computer science;                

this is just one of his many contributions

– Many people have a favorite Dijkstra story, even if they 

never met him

Spring 2015 43CSE373: Data Structures & Algorithms



Dijkstra’s Algorithm

• The idea: reminiscent of BFS, but adapted to handle weights

– Grow the set of nodes whose shortest distance has been 

computed

– Nodes not in the set will have a “best distance so far”

– A priority queue will turn out to be useful for efficiency

• An example of a greedy algorithm

– A series of steps

– At each one the locally optimal choice is made

Spring 2015 44CSE373: Data Structures & Algorithms


