
CSE373: Data Structures & Algorithms

Lecture 11: Implementing Union-Find

Lauren Milne

Spring 2015

Announcements

• Homework 3 due in ONE week…Wednesday April 29th!

• TA sessions

• Catie will be back on Monday.

Spring 2015 2CSE373: Data Structures & Algorithms

The plan

Last lecture:

• Disjoint sets

• The union-find ADT for disjoint sets

Today’s lecture:

• Basic implementation of the union-find ADT with “up trees”

• Optimizations that make the implementation much faster

Spring 2015 3CSE373: Data Structures & Algorithms

Union-Find ADT

• Given an unchanging set S, create an initial partition of a set

– Typically each item in its own subset: {a}, {b}, {c}, …

– Give each subset a “name” by choosing a representative

element

• Operation find takes an element of S and returns the

representative element of the subset it is in

• Operation union takes two subsets and (permanently) makes

one larger subset

– A different partition with one fewer set

– Affects result of subsequent find operations

– Choice of representative element up to implementation

Spring 2015 4CSE373: Data Structures & Algorithms

Implementation – our goal

• Start with an initial partition of n subsets

– Often 1-element sets, e.g., {1}, {2}, {3}, …, {n}

• May have m find operations

• May have up to n-1 union operations in any order

– After n-1 union operations, every find returns same 1 set

Spring 2015 5CSE373: Data Structures & Algorithms

Up-tree data structure

• Tree with:

– No limit on branching factor

– References from children to parent

• Start with forest of 1-node trees

• Possible forest after several unions:

– Will use roots for

set names

Spring 2015 6CSE373: Data Structures & Algorithms

1 2 3 4 5 6 7

1

2

3

45

6

7

Find

find(x):

– Assume we have O(1) access to each node

• Will use an array where index i holds node i

– Start at x and follow parent pointers to root

– Return the root

Spring 2015 7CSE373: Data Structures & Algorithms

1

2

3

45

6

7

find(6) = 7

Union

union(x,y):

– Assume x and y are roots

• Else find the roots of their trees

– Assume distinct trees (else do nothing)

– Change root of one to have parent be the root of the other

• Notice no limit on branching factor

Spring 2015 8CSE373: Data Structures & Algorithms

1

2

3

45

6

7

union(1,7)

Simple implementation

• If set elements are contiguous numbers (e.g., 1,2,…,n), use an
array of length n called up

– Starting at index 1 on slides

– Put in array index of parent, with 0 (or -1, etc.) for a root

• Example:

• Example:

• If set elements are not contiguous numbers, could have a

separate dictionary to map elements (keys) to numbers (values)

Spring 2015 9CSE373: Data Structures & Algorithms

1

2

3

45

6

7
0 1 0 7 7 5 0

1 2 3 4 5 6 7

up

1 2 3 4 5 6 7 0 0 0 0 0 0 0

1 2 3 4 5 6 7

up

Implement operations

• Worst-case run-time for union?

• Worst-case run-time for find?

• Worst-case run-time for m finds and n-1 unions?

Spring 2015 10CSE373: Data Structures & Algorithms

// assumes x in range 1,n

int find(int x) {

while(up[x] != 0) {

x = up[x];

}

return x;

}

// assumes x,y are roots

void union(int x, int y){

up[y] = x;

}

1

2

3

45

6

7

0 1 0 7 7 5 0

1 2 3 4 5 6 7

up

O(1)

O(n)
O(m*n)

Two key optimizations

1. Improve union so it stays O(1) but makes find O(log n)

– So m finds and n-1 unions is O(m log n + n)

– Union-by-size: connect smaller tree to larger tree

2. Improve find so it becomes even faster

– Make m finds and n-1 unions almost O(m + n)

– Path-compression: connect directly to root during finds

Spring 2015 11CSE373: Data Structures & Algorithms

The bad case to avoid

Spring 2015 12CSE373: Data Structures & Algorithms

1 2 3 n…

1

2 3 n union(2,1)

1

2

3 n
union(3,2)

union(n,n-1)

…

…

1

2

3

n

:

.

find(1) = n steps!!

Union-by-size

Union-by-size:

– Always point the smaller (total # of nodes) tree to the root of

the larger tree

Spring 2015 13CSE373: Data Structures & Algorithms

1

2

3

45

6

7

union(1,7)

2 41

Union-by-size

Union-by-size:

– Always point the smaller (total # of nodes) tree to the root of

the larger tree

Spring 2015 14CSE373: Data Structures & Algorithms

1

2

3

45

6

7

union(1,7)

61

Array implementation

Keep the size (number of nodes in a second array)

– Or have one array of objects with two fields

Spring 2015 15CSE373: Data Structures & Algorithms

1

2

3
2 1

0

2

1 0

1

7 7 5 0

4

1 2 3 4 5 6 7

up
weight

45

6

74

1

2

3
1

7 1 0

1

7 7 5 0

6
up

weight
45

6

76 1 2 3 4 5 6 7

Nifty trick

Actually we do not need a second array…

– Instead of storing 0 for a root, store negation of size

– So up value < 0 means a root

Spring 2015 16CSE373: Data Structures & Algorithms

1

2

3
2 1

-2 1 -1 7 7 5 -4

1 2 3 4 5 6 7

up45

6

74

1

2

3
1

7 1 -1 7 7 5 -6up45

6

76
1 2 3 4 5 6 7

The Bad case? Now a Great case…

Spring 2015 17CSE373: Data Structures & Algorithms

union(2,1)

union(3,2)

union(n,n-1)

:

find(1) constant here

1 2 3 n

1

2 3 n

1

2

3

n

…

…

1

2

3 n…

General analysis

• Showing one worst-case example is now good is not a proof

that the worst-case has improved

• So let’s prove:

– union is still O(1) – this is “obvious”

– find is now O(log n)

• Claim: If we use union-by-size, an up-tree of height h has at

least 2h nodes

– Proof by induction on h…

Spring 2015 18CSE373: Data Structures & Algorithms

Exponential number of nodes

P(h)= With union-by-size, up-tree of height h has at least 2h nodes

Proof by induction on h…

• Base case: h = 0: The up-tree has 1 node and 20= 1

• Inductive case: Assume P(h) and show P(h+1)

– A height h+1 tree T has at least one height h child T1

– T1 has at least 2h nodes by induction (assumption)

– And T has at least as many nodes not in T1 than in T1

• Else union-by-size would have

had T point to T1, not T1 point to T (!!)

– So total number of nodes is at least 2h + 2h = 2h+1
.

Spring 2015 19CSE373: Data Structures & Algorithms

h
T1

T

The key idea

Intuition behind the proof: No one child can have more than half the

nodes

So, as usual, if number of nodes is exponential in height,

then height is logarithmic in number of nodes

So find is O(log n)

Spring 2015 20CSE373: Data Structures & Algorithms

h
T1

T

The new worst case

Spring 2015 21CSE373: Data Structures & Algorithms

n/2 Unions-by-size

n/4 Unions-by-size

n/8 Unions-by-size

The new worst case (continued)

Spring 2015 22CSE373: Data Structures & Algorithms

After n/2 + n/4 + …+ 1 Unions-by-size:

Worst

findHeight grows by 1 a total of log n times

log n

What about union-by-height

We could store the height of each root rather than size

• Still guarantees logarithmic worst-case find

– Proof left as an exercise if interested

• But does not work well with our next optimization

– Maintaining height becomes inefficient, but maintaining size

still easy

Spring 2015 23CSE373: Data Structures & Algorithms

Two key optimizations

1. Improve union so it stays O(1) but makes find O(log n)

– So m finds and n-1 unions is O(m log n + n)

– Union-by-size: connect smaller tree to larger tree

2. Improve find so it becomes even faster

– Make m finds and n-1 unions almost O(m + n)

– Path-compression: connect directly to root during finds

Spring 2015 24CSE373: Data Structures & Algorithms

Path compression

• Simple idea: As part of a find, change each encountered

node’s parent to point directly to root

– Faster future finds for everything on the path (and their

descendants)

Spring 2015 25CSE373: Data Structures & Algorithms

1

2

3

4
5

6

7

find(3)

8 9

10

1

2 3 456

7

8 910

11 12

11 12

Pseudocode

Spring 2015 26

// performs path compression

int find(i) {

// find root

int r = i

while(up[r] > 0)

r = up[r]

// compress path

if i==r

return r;

int old_parent = up[i]

while(old_parent != r) {

up[i] = r

i = old_parent;

old_parent = up[i]

}

return r;

}

3

5

6

7

find(3)

10

3 56

7

10

11 12

11 12

i=3

r=3

r=6

r=5

r=7

old_parent=6

up[3]=7

i=6

old_parent=5

up[6]=7

i=5

old_parent=7

Example

CSE373: Data Structures & Algorithms

So, how fast is it?

A single worst-case find could be O(log n)

– But only if we did a lot of worst-case unions beforehand

– And path compression will make future finds faster

Turns out the amortized worst-case bound is much better than O(log n)

– We won’t prove it – see text if curious

– But we will understand it:

• How it is almost O(1)

• Because total for m finds and n-1 unions is almost O(m+n)

Spring 2015 27CSE373: Data Structures & Algorithms

A really slow-growing function

log* x is the minimum number of times you need to apply “log of

log of log of” to go from x to a number <= 1

For just about every number we care about, log* x is less than or

equal to 5 (!)

If x <= 265536 then log* x <= 5

– log* 2 = 1

– log* 4 = log* 22 = 2

– log* 16 = log* 2(22) = 3 (log log log 16 = 1)

– log* 65536 = log* 2((22)2) = 4 (log log log log 65536 = 1)

– log* 265536 = …………… = 5

Spring 2015 28CSE373: Data Structures & Algorithms

Almost linear

• Turns out total time for m finds and n-1 unions is

O((m+n)*(log* (m+n))

– Remember, if m+n < 265536 then log* (m+n) < 5

so effectively we have O(m+n)

• Because log* grows soooo slowly

– For all practical purposes, amortized bound is constant, i.e.,

cost of find is constant, total cost for m finds is linear

– We say “near linear” or “effectively linear”

• Need union-by-size and path-compression for this bound

– Path-compression changes height but not weight, so they

interact well

• As always, asymptotic analysis is separate from “coding it up”

Spring 2015 29CSE373: Data Structures & Algorithms

