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Announcements

• Homework 3 due in ONE week…Wednesday April 29th!

• TA sessions

• Catie will be back on Monday.
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The plan

Last lecture:

• Disjoint sets

• The union-find ADT for disjoint sets

Today’s lecture:

• Basic implementation of the union-find ADT with “up trees”

• Optimizations that make the implementation much faster
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Union-Find ADT

• Given an unchanging set S, create an initial partition of a set

– Typically each item in its own subset: {a}, {b}, {c}, …

– Give each subset a “name” by choosing a representative 

element

• Operation find takes an element of S and returns the 

representative element of the subset it is in

• Operation union takes two subsets and (permanently) makes 

one larger subset

– A different partition with one fewer set

– Affects result of subsequent find operations

– Choice of representative element up to implementation
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Implementation – our goal

• Start with an initial partition of n subsets

– Often 1-element sets, e.g., {1}, {2}, {3}, …, {n}

• May have m find operations 

• May have up to n-1 union operations in any order

– After n-1 union operations, every find returns same 1 set
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Up-tree data structure

• Tree with:

– No limit on branching factor 

– References from children to parent

• Start with forest of 1-node trees

• Possible forest after several unions:

– Will use roots for

set names
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Find 

find(x):

– Assume we have O(1) access to each node

• Will use an array where index i holds node i

– Start at x and follow parent pointers to root

– Return the root
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Union

union(x,y):

– Assume x and y are roots

• Else find the roots of their trees

– Assume distinct trees (else do nothing)

– Change root of one to have parent be the root of the other

• Notice no limit on branching factor
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Simple implementation

• If set elements are contiguous numbers (e.g., 1,2,…,n), use an 
array of length n called up

– Starting at index 1 on slides

– Put in array index of parent, with 0 (or -1, etc.) for a root

• Example:

• Example:

• If set elements are not contiguous numbers, could have a 

separate dictionary to map elements (keys) to numbers (values)
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Implement operations

• Worst-case run-time for union?  

• Worst-case run-time for find?  

• Worst-case run-time for m finds and n-1 unions?  
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// assumes x in range 1,n

int find(int x) {

while(up[x] != 0) {

x = up[x];

}

return x;

}

// assumes x,y are roots

void union(int x, int y){

up[y] = x;

}
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Two key optimizations

1. Improve union so it stays O(1) but makes find O(log n) 

– So m finds and n-1 unions is O(m log n + n)

– Union-by-size: connect smaller tree to larger tree

2. Improve find so it becomes even faster

– Make m finds and n-1 unions almost O(m + n)

– Path-compression: connect directly to root during finds
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The bad case to avoid
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Union-by-size

Union-by-size:

– Always point the smaller (total # of nodes) tree to the root of 

the larger tree
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Union-by-size

Union-by-size:

– Always point the smaller (total # of nodes) tree to the root of 

the larger tree
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Array implementation

Keep the size (number of nodes in a second array)

– Or have one array of objects with two fields
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Nifty trick

Actually we do not need a second array…

– Instead of storing 0 for a root, store negation of size

– So up value < 0 means a root
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The Bad case? Now a Great case…
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General analysis

• Showing one worst-case example is now good is not a proof 

that the worst-case has improved

• So let’s prove:

– union is still O(1) – this is “obvious”

– find is now O(log n) 

• Claim: If we use union-by-size, an up-tree of height h has at 

least 2h nodes

– Proof by induction on h…
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Exponential number of nodes

P(h)= With union-by-size, up-tree of height h has at least 2h nodes

Proof by induction on h…

• Base case: h = 0: The up-tree has 1 node and 20= 1

• Inductive case: Assume P(h) and show P(h+1)

– A height h+1 tree T has at least one height h child T1

– T1 has at least 2h nodes by induction (assumption)

– And T has at least as many nodes not in T1 than in T1

• Else union-by-size would have 

had T point to T1, not T1 point to T (!!)

– So total number of nodes is at least 2h + 2h = 2h+1
.

Spring 2015 19CSE373: Data Structures & Algorithms

h
T1

T



The key idea

Intuition behind the proof: No one child can have more than half the 

nodes

So, as usual, if number of nodes is exponential in height,

then height is logarithmic in number of nodes

So find is O(log n) 
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The new worst case
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n/2 Unions-by-size

n/4 Unions-by-size

n/8 Unions-by-size



The new worst case (continued)
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After n/2 + n/4 + …+ 1 Unions-by-size:

Worst

findHeight grows by 1 a total of log n times

log n



What about union-by-height

We could store the height of each root rather than size

• Still guarantees logarithmic worst-case find

– Proof left as an exercise if interested

• But does not work well with our next optimization

– Maintaining height becomes inefficient, but maintaining size 

still easy

Spring 2015 23CSE373: Data Structures & Algorithms



Two key optimizations

1. Improve union so it stays O(1) but makes find O(log n) 

– So m finds and n-1 unions is O(m log n + n)

– Union-by-size: connect smaller tree to larger tree

2. Improve find so it becomes even faster

– Make m finds and n-1 unions almost O(m + n)

– Path-compression: connect directly to root during finds
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Path compression

• Simple idea: As part of a find, change each encountered 

node’s parent to point directly to root

– Faster future finds for everything on the path (and their 

descendants)
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Pseudocode
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// performs path compression

int find(i) {

// find root

int r = i

while(up[r] > 0)

r = up[r]

// compress path

if i==r

return r;

int old_parent = up[i]

while(old_parent != r) {

up[i] = r

i = old_parent;

old_parent = up[i]

}

return r;

}
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r=7

old_parent=6

up[3]=7

i=6

old_parent=5

up[6]=7

i=5

old_parent=7

Example
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So, how fast is it?

A single worst-case find could be O(log n) 

– But only if we did a lot of worst-case unions beforehand

– And path compression will make future finds faster

Turns out the amortized worst-case bound is much better than O(log n) 

– We won’t prove it – see text if curious

– But we will understand it:

• How it is almost O(1)

• Because total for m finds and n-1 unions is almost O(m+n)
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A really slow-growing function

log* x is the minimum number of times you need to apply “log of 

log of log of” to go from x to a number <= 1

For just about every number we care about, log* x is less than or 

equal to 5 (!)

If x <= 265536 then log* x <= 5

– log* 2 = 1

– log* 4 = log* 22 = 2

– log* 16 = log* 2(22) = 3           (log log log 16 = 1)

– log* 65536 = log* 2((22)2) = 4    (log log log log 65536 = 1)

– log* 265536 = …………… = 5
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Almost linear

• Turns out total time for m finds and n-1 unions is 

O((m+n)*(log* (m+n))

– Remember, if m+n < 265536 then log* (m+n) < 5

so effectively we have O(m+n)

• Because log* grows soooo slowly

– For all practical purposes, amortized bound is constant, i.e., 

cost of find is constant, total cost for m finds is linear

– We say “near linear” or “effectively linear”

• Need union-by-size and path-compression for this bound

– Path-compression changes height but not weight, so they 

interact well

• As always, asymptotic analysis is separate from “coding it up”
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