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Priority Queue ADT 

Binary Heap 
Fibonacci Heap Paring Heap 

Binomial Heap 

A priority queue is just an abstraction for an ordered queue. 

A binary heap is a simple and concrete implementation of a priority queue 

It’s just one of many possible implementations! 

Brodal Heap 

"quite complicated" 
and "[not] applicable 
in practice.”  
-Gerth Brodal 



Review 

•  Priority Queue ADT: insert comparable object, deleteMin 
•  Binary heap data structure: Complete binary tree where each 

node has priority value greater than its parent 
•  O(height-of-tree) = O(log n) insert and deleteMin operations 

–  insert:        put at new last position in tree and percolate-up 
–  deleteMin:  remove root, put ‘last’ element at root and   

                     percolate-down 
•  But: tracking the “last position” is painful and we can do better 
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Array Representation of Binary Trees 
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Starting at node i 
 
left child: i*2 
right child: i*2+1 
parent: i/2 
 
(wasting index 0 is 
convenient for the 
index arithmetic) 
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implicit (array) implementation: 
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i = 4 left right parent 
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http://xkcd.com/163 



Judging the array implementation 

Positives: 
•  Non-data space is minimized: just index 0 and unused space on right 

–  In conventional tree representation, one edge per node (except 
for root), so n-1 wasted space (like linked lists) 

–  Array would waste more space if tree were not complete 
 

•  Multiplying and dividing by 2 is very fast (shift operations in 
hardware) 

•  Last used position is just index size 

Negatives: 
•  Same might-by-empty or might-get-full problems we saw with stacks 

and queues (resize by doubling as necessary) 
 

Plusses outweigh minuses: “this is how people do it” 
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Pseudocode: insert 
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void insert(int val) { 
 if(size == arr.length-1) 

     resize();   
   size++; 
   i=percolateUp(size,val); 
   arr[i] = val; 
} 

int percolateUp(int hole,int val) { 
  while(hole > 1 && 
        val < arr[hole/2]) 
    arr[hole] = arr[hole/2]; 
    hole = hole / 2; 
  } 
  return hole; 
} 
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This pseudocode uses ints.  In real use, 
you will have data nodes with priorities. 



Pseudocode: deleteMin 
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int deleteMin() { 
  if(isEmpty()) throw… 
  ans = arr[1]; 
  hole = percolateDown 
          (1,arr[size]); 
  arr[hole] = arr[size]; 
  size--; 
  return ans; 
} 

int percolateDown(int hole,int val){ 
 while(2*hole <= size) { 
   left  = 2*hole;  
   right = left + 1; 
   if(arr[left] < arr[right] 
      || right > size) 
     target = left; 
   else 
     target = right; 
   if(arr[target] < val) { 
     arr[hole] = arr[target]; 
     hole = target; 
   } else 
     break; 
 } 
 return hole; 
} 
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This pseudocode uses ints.  In real use, 
you will have data nodes with priorities. 



Example 

1.  insert: 16, 32, 4, 69, 105, 43, 2 
2.  deleteMin 
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Example 

1.  insert: 16, 32, 4, 69, 105, 43, 2 
2.  deleteMin 
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Example 

1.  insert: 16, 32, 4, 69, 105, 43, 2 
2.  deleteMin 
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Example 

1.  insert: 16, 32, 4, 69, 105, 43, 2 
2.  deleteMin 
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Example 

1.  insert: 16, 32, 4, 69, 105, 43, 2 
2.  deleteMin 
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Example 

1.  insert: 16, 32, 4, 69, 105, 43, 2 
2.  deleteMin 
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Example 

1.  insert: 16, 32, 4, 69, 105, 43, 2 
2.  deleteMin 
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Example 

1.  insert: 16, 32, 4, 69, 105, 43, 2 
2.  deleteMin 
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Other operations 

•  decreaseKey: given pointer to object in priority queue (e.g., its 
array index), lower its priority value. Remember lower priority 
value is *better* (higher in tree). 
–  Change priority and percolate up 

•  increaseKey: given pointer to object in priority queue (e.g., its 
array index), raise its priority value. 
–  Change priority and percolate down 

•  remove: given pointer to object in priority queue (e.g., its array 
index), remove it from the queue. 
–  Percolate up to top and removeMin 

Running time for all these operations? 
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Build Heap 

•  Suppose you have n items to put in a new (empty) priority queue 
–  Call this operation buildHeap  

•  n distinct inserts works (slowly) 
–  Only choice if ADT doesn’t provide buildHeap explicitly 
–  O(n log n) 

•  Why would an ADT provide this unnecessary operation? 
–  Convenience 
–  Efficiency: an O(n) algorithm called Floyd’s Method 
–  Common issue in ADT design: how many specialized 

operations 
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Floyd’s Method 

1.  Use n items to make any complete tree you want 
–  That is, put them in array indices 1,…,n 

2.  Treat it as a heap and fix the heap-order property 
–  Bottom-up: leaves are already in heap order, work up 

toward the root one level at a time 
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void buildHeap() { 
 for(i = size/2; i>0; i--) { 

    val  = arr[i]; 
   hole = percolateDown(i,val); 

    arr[hole] = val; 
  } 
} 



Example 

•  In tree form for readability 
–  Purple for node not less than 

descendants  
•  heap-order problem 

–  Notice no leaves are purple 
–  Check/fix each non-leaf 

bottom-up (6 steps here) 

Fall 2015 20 CSE373: Data Structures & Algorithms 

6 7 1 8 

9 2 10 3 

11 5 

12 

4 



Example 
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Step 1 

•  Happens to already be less than children (er, child) 



Example 
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Step 2 

•  Percolate down (notice that moves 1 up) 

6 7 10 8 

9 2 1 3 

11 5 

12 

4 



Example 
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Step 3 

•  Another nothing-to-do step 
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Example 
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Step 4 

•  Percolate down as necessary (steps 4a and 4b) 

11 7 10 8 

9 6 1 3 

2 5 

12 

4 6 7 10 8 

9 2 1 3 

11 5 

12 

4 



Example 
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Step 5 
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Example 
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Step 6 
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But is it right? 

•  “Seems to work” 
–  Let’s prove it restores the heap property (correctness) 
–  Then let’s prove its running time (efficiency) 
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void buildHeap() { 
 for(i = size/2; i>0; i--) { 

    val  = arr[i]; 
   hole = percolateDown(i,val); 

    arr[hole] = val; 
  } 
} 



Correctness 

Loop Invariant: For all j>i, arr[j] is less than its children 
•  True initially: If j > size/2, then j is  a leaf 

–  Otherwise its left child would be at position > size 
•  True after one more iteration: loop body and percolateDown 

make arr[i] less than children without breaking the property 
for any descendants 

So after the loop finishes, all nodes are less than their children 
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void buildHeap() { 
 for(i = size/2; i>0; i--) { 

    val  = arr[i]; 
   hole = percolateDown(i,val); 

    arr[hole] = val; 
  } 
} 



Efficiency 

Easy argument:  buildHeap is O(n log n) where n is size 
•  size/2 loop iterations 
•  Each iteration does one percolateDown, each is O(log n) 

This is correct, but there is a more precise (“tighter”) analysis of 
the algorithm… 
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void buildHeap() { 
 for(i = size/2; i>0; i--) { 

    val  = arr[i]; 
   hole = percolateDown(i,val); 

    arr[hole] = val; 
  } 
} 



Efficiency 

Better argument:  buildHeap is O(n) where n is size 
•  size/2 total loop iterations: O(n) 
•  1/2 the loop iterations percolate at most 1 step 
•  1/4 the loop iterations percolate at most 2 steps 
•  1/8 the loop iterations percolate at most 3 steps 
•  … 
•  ((1/2) + (2/4) + (3/8) + (4/16) + (5/32) + …) < 2  (page 4 of Weiss) 

–  So at most 2(size/2) total percolate steps: O(n)  
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void buildHeap() { 
 for(i = size/2; i>0; i--) { 

    val  = arr[i]; 
   hole = percolateDown(i,val); 

    arr[hole] = val; 
  } 
} 



Lessons from buildHeap 

•  Without buildHeap, our ADT already let clients implement their 
own in O(n log n) worst case 
–  Worst case is inserting better priority values later 

•  By providing a specialized operation internal to the data structure 
(with access to the internal data), we can do O(n) worst case 
–  Intuition: Most data is near a leaf, so better to percolate down 

•  Can analyze this algorithm for: 
–  Correctness:  

•  Non-trivial inductive proof using loop invariant 
–  Efficiency: 

•  First analysis easily proved it was O(n log n) 
•  Tighter analysis shows same algorithm is O(n) 
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What we are skipping 

•  merge: given two priority queues, make one priority queue 
–  How might you merge binary heaps: 

•  If one heap is much smaller than the other? 
•  If both are about the same size? 
 

–  Different pointer-based data structures for priority queues 
support logarithmic time merge operation (impossible with 
binary heaps) 

•  Leftist heaps, skew heaps, binomial queues 
•  Worse constant factors 
•  Trade-offs! 

Fall 2015 32 CSE373: Data Structures & Algorithms 


