
CSE373: Data Structures & Algorithms

Lecture 9: Binary Heaps, Continued

Kevin Quinn
Fall 2015

Fall 2015 2 CSE373: Data Structures & Algorithms

Priority Queue ADT

Binary Heap
Fibonacci Heap Paring Heap

Binomial Heap

A priority queue is just an abstraction for an ordered queue.

A binary heap is a simple and concrete implementation of a priority queue

It’s just one of many possible implementations!

Brodal Heap

"quite complicated"
and "[not] applicable
in practice.”
-Gerth Brodal

Review

•  Priority Queue ADT: insert comparable object, deleteMin
•  Binary heap data structure: Complete binary tree where each

node has priority value greater than its parent
•  O(height-of-tree) = O(log n) insert and deleteMin operations

–  insert: put at new last position in tree and percolate-up
–  deleteMin: remove root, put ‘last’ element at root and

 percolate-down
•  But: tracking the “last position” is painful and we can do better

Fall 2015 3 CSE373: Data Structures & Algorithms

insert deleteMin

 6 2
 15 23
 12 18
45 3 7 99 60 40

80 20

10

700 50

85

Fall 2015 4

Array Representation of Binary Trees

G E D

C B

A

J K H I

F

L

Starting at node i

left child: i*2
right child: i*2+1
parent: i/2

(wasting index 0 is
convenient for the
index arithmetic)

7

1

2 3

4 5 6

9 8 10 11 12

A B C D E F G H I J K L
0 1 2 3 4 5 6 7 8 9 10 11 12 13

implicit (array) implementation:

CSE373: Data Structures & Algorithms

i = 4 left right parent

Fall 2015 5 CSE373: Data Structures & Algorithms

http://xkcd.com/163

Judging the array implementation

Positives:
•  Non-data space is minimized: just index 0 and unused space on right

–  In conventional tree representation, one edge per node (except
for root), so n-1 wasted space (like linked lists)

–  Array would waste more space if tree were not complete

•  Multiplying and dividing by 2 is very fast (shift operations in
hardware)

•  Last used position is just index size

Negatives:
•  Same might-by-empty or might-get-full problems we saw with stacks

and queues (resize by doubling as necessary)

Plusses outweigh minuses: “this is how people do it”
Fall 2015 6 CSE373: Data Structures & Algorithms

Pseudocode: insert

Fall 2015 7 CSE373: Data Structures & Algorithms

void insert(int val) {
 if(size == arr.length-1)

 resize();
 size++;
 i=percolateUp(size,val);
 arr[i] = val;
}

int percolateUp(int hole,int val) {
 while(hole > 1 &&
 val < arr[hole/2])
 arr[hole] = arr[hole/2];
 hole = hole / 2;
 }
 return hole;
}

99 60 40

80 20

10

70 50

85

10 20 80 40 60 85 99 700 50
0 1 2 3 4 5 6 7 8 9 10 11 12 13

This pseudocode uses ints. In real use,
you will have data nodes with priorities.

Pseudocode: deleteMin

Fall 2015 8 CSE373: Data Structures & Algorithms

int deleteMin() {
 if(isEmpty()) throw…
 ans = arr[1];
 hole = percolateDown
 (1,arr[size]);
 arr[hole] = arr[size];
 size--;
 return ans;
}

int percolateDown(int hole,int val){
 while(2*hole <= size) {
 left = 2*hole;
 right = left + 1;
 if(arr[left] < arr[right]
 || right > size)
 target = left;
 else
 target = right;
 if(arr[target] < val) {
 arr[hole] = arr[target];
 hole = target;
 } else
 break;
 }
 return hole;
}

99 60 40

80 20

10

700 50

85

10 20 80 40 60 85 99 700 50
0 1 2 3 4 5 6 7 8 9 10 11 12 13

This pseudocode uses ints. In real use,
you will have data nodes with priorities.

Example

1.  insert: 16, 32, 4, 69, 105, 43, 2
2.  deleteMin

Fall 2015 9 CSE373: Data Structures & Algorithms

0 1 2 3 4 5 6 7

Example

1.  insert: 16, 32, 4, 69, 105, 43, 2
2.  deleteMin

Fall 2015 10 CSE373: Data Structures & Algorithms

16
0 1 2 3 4 5 6 7

 16

Example

1.  insert: 16, 32, 4, 69, 105, 43, 2
2.  deleteMin

Fall 2015 11 CSE373: Data Structures & Algorithms

16 32
0 1 2 3 4 5 6 7

32

 16

Example

1.  insert: 16, 32, 4, 69, 105, 43, 2
2.  deleteMin

Fall 2015 12 CSE373: Data Structures & Algorithms

4 32 16
0 1 2 3 4 5 6 7

16 32

 4

Example

1.  insert: 16, 32, 4, 69, 105, 43, 2
2.  deleteMin

Fall 2015 13 CSE373: Data Structures & Algorithms

4 32 16 69
0 1 2 3 4 5 6 7

69

16 32

 4

Example

1.  insert: 16, 32, 4, 69, 105, 43, 2
2.  deleteMin

Fall 2015 14 CSE373: Data Structures & Algorithms

4 32 16 69 105
0 1 2 3 4 5 6 7

105 69

16 32

 4

Example

1.  insert: 16, 32, 4, 69, 105, 43, 2
2.  deleteMin

Fall 2015 15 CSE373: Data Structures & Algorithms

4 32 16 69 105 43
0 1 2 3 4 5 6 7

105 69

16 32

 4

43

Example

1.  insert: 16, 32, 4, 69, 105, 43, 2
2.  deleteMin

Fall 2015 16 CSE373: Data Structures & Algorithms

2 32 4 69 105 43 16
0 1 2 3 4 5 6 7

105 69

4 32

 2

43 16

Other operations

•  decreaseKey: given pointer to object in priority queue (e.g., its
array index), lower its priority value. Remember lower priority
value is *better* (higher in tree).
–  Change priority and percolate up

•  increaseKey: given pointer to object in priority queue (e.g., its
array index), raise its priority value.
–  Change priority and percolate down

•  remove: given pointer to object in priority queue (e.g., its array
index), remove it from the queue.
–  Percolate up to top and removeMin

Running time for all these operations?
Fall 2015 17 CSE373: Data Structures & Algorithms

Build Heap

•  Suppose you have n items to put in a new (empty) priority queue
–  Call this operation buildHeap

•  n distinct inserts works (slowly)
–  Only choice if ADT doesn’t provide buildHeap explicitly
–  O(n log n)

•  Why would an ADT provide this unnecessary operation?
–  Convenience
–  Efficiency: an O(n) algorithm called Floyd’s Method
–  Common issue in ADT design: how many specialized

operations

Fall 2015 18 CSE373: Data Structures & Algorithms

Floyd’s Method

1.  Use n items to make any complete tree you want
–  That is, put them in array indices 1,…,n

2.  Treat it as a heap and fix the heap-order property
–  Bottom-up: leaves are already in heap order, work up

toward the root one level at a time

Fall 2015 19 CSE373: Data Structures & Algorithms

void buildHeap() {
 for(i = size/2; i>0; i--) {

 val = arr[i];
 hole = percolateDown(i,val);

 arr[hole] = val;
 }
}

Example

•  In tree form for readability
–  Purple for node not less than

descendants
•  heap-order problem

–  Notice no leaves are purple
–  Check/fix each non-leaf

bottom-up (6 steps here)

Fall 2015 20 CSE373: Data Structures & Algorithms

6 7 1 8

9 2 10 3

11 5

12

4

Example

Fall 2015 21 CSE373: Data Structures & Algorithms

6 7 1 8

9 2 10 3

11 5

12

4 6 7 1 8

9 2 10 3

11 5

12

4

Step 1

•  Happens to already be less than children (er, child)

Example

Fall 2015 22 CSE373: Data Structures & Algorithms

6 7 1 8

9 2 10 3

11 5

12

4

Step 2

•  Percolate down (notice that moves 1 up)

6 7 10 8

9 2 1 3

11 5

12

4

Example

Fall 2015 23 CSE373: Data Structures & Algorithms

Step 3

•  Another nothing-to-do step

6 7 10 8

9 2 1 3

11 5

12

4 6 7 10 8

9 2 1 3

11 5

12

4

Example

Fall 2015 24 CSE373: Data Structures & Algorithms

Step 4

•  Percolate down as necessary (steps 4a and 4b)

11 7 10 8

9 6 1 3

2 5

12

4 6 7 10 8

9 2 1 3

11 5

12

4

Example

Fall 2015 25 CSE373: Data Structures & Algorithms

Step 5

11 7 10 8

9 6 5 3

2 1

12

4 11 7 10 8

9 6 1 3

2 5

12

4

Example

Fall 2015 26 CSE373: Data Structures & Algorithms

Step 6

11 7 10 8

9 6 5 4

2 3

1

12 11 7 10 8

9 6 5 3

2 1

12

4

But is it right?

•  “Seems to work”
–  Let’s prove it restores the heap property (correctness)
–  Then let’s prove its running time (efficiency)

Fall 2015 27 CSE373: Data Structures & Algorithms

void buildHeap() {
 for(i = size/2; i>0; i--) {

 val = arr[i];
 hole = percolateDown(i,val);

 arr[hole] = val;
 }
}

Correctness

Loop Invariant: For all j>i, arr[j] is less than its children
•  True initially: If j > size/2, then j is a leaf

–  Otherwise its left child would be at position > size
•  True after one more iteration: loop body and percolateDown

make arr[i] less than children without breaking the property
for any descendants

So after the loop finishes, all nodes are less than their children

Fall 2015 28 CSE373: Data Structures & Algorithms

void buildHeap() {
 for(i = size/2; i>0; i--) {

 val = arr[i];
 hole = percolateDown(i,val);

 arr[hole] = val;
 }
}

Efficiency

Easy argument: buildHeap is O(n log n) where n is size
•  size/2 loop iterations
•  Each iteration does one percolateDown, each is O(log n)

This is correct, but there is a more precise (“tighter”) analysis of
the algorithm…

Fall 2015 29 CSE373: Data Structures & Algorithms

void buildHeap() {
 for(i = size/2; i>0; i--) {

 val = arr[i];
 hole = percolateDown(i,val);

 arr[hole] = val;
 }
}

Efficiency

Better argument: buildHeap is O(n) where n is size
•  size/2 total loop iterations: O(n)
•  1/2 the loop iterations percolate at most 1 step
•  1/4 the loop iterations percolate at most 2 steps
•  1/8 the loop iterations percolate at most 3 steps
•  …
•  ((1/2) + (2/4) + (3/8) + (4/16) + (5/32) + …) < 2 (page 4 of Weiss)

–  So at most 2(size/2) total percolate steps: O(n)
Fall 2015 30 CSE373: Data Structures & Algorithms

void buildHeap() {
 for(i = size/2; i>0; i--) {

 val = arr[i];
 hole = percolateDown(i,val);

 arr[hole] = val;
 }
}

Lessons from buildHeap

•  Without buildHeap, our ADT already let clients implement their
own in O(n log n) worst case
–  Worst case is inserting better priority values later

•  By providing a specialized operation internal to the data structure
(with access to the internal data), we can do O(n) worst case
–  Intuition: Most data is near a leaf, so better to percolate down

•  Can analyze this algorithm for:
–  Correctness:

•  Non-trivial inductive proof using loop invariant
–  Efficiency:

•  First analysis easily proved it was O(n log n)
•  Tighter analysis shows same algorithm is O(n)

Fall 2015 31 CSE373: Data Structures & Algorithms

What we are skipping

•  merge: given two priority queues, make one priority queue
–  How might you merge binary heaps:

•  If one heap is much smaller than the other?
•  If both are about the same size?

–  Different pointer-based data structures for priority queues
support logarithmic time merge operation (impossible with
binary heaps)

•  Leftist heaps, skew heaps, binomial queues
•  Worse constant factors
•  Trade-offs!

Fall 2015 32 CSE373: Data Structures & Algorithms

