
CSE373: Data Structures & Algorithms

Lecture 6: Priority Queues

Kevin Quinn
Fall 2015

A Quick Note:

•  Homework 2 due tonight at 11pm!

Fall 2015 2 CSE373: Data Structures & Algorithms

A new ADT: Priority Queue

•  Textbook Chapter 6
–  Nice to see a new and surprising data structure

•  A priority queue holds compare-able data
–  Like dictionaries and unlike stacks and queues, need to

compare items
•  Given x and y, is x less than, equal to, or greater than y
•  Meaning of the ordering can depend on your data
•  Many data structures require this: dictionaries, sorting

–  Integers are comparable, so will use them in examples
•  But the priority queue ADT is much more general
•  Typically two fields, the priority and the data

Fall 2015 3 CSE373: Data Structures & Algorithms

Priorities
•  Each item has a “priority”

–  The lesser item is the one with the greater priority
–  So “priority 1” is more important than “priority 4”
–  (Just a convention, think “first is best”)

•  Operations:
–  insert
–  deleteMin
–  is_empty

•  Key property: deleteMin returns and deletes the item with
greatest priority (lowest priority value)
–  Can resolve ties arbitrarily

Fall 2015 4 CSE373: Data Structures & Algorithms

insert deleteMin

 6 2
 15 23
 12 18
45 3 7

Example

 insert e1 with priority 5
 insert e2 with priority 3
 insert e3 with priority 4
 a = deleteMin // a = e2
 b = deleteMin // b = e3
 insert e4 with priority 2
 insert e5 with priority 6
 c = deleteMin // c = e4
 d = deleteMin // d = e1

•  Analogy: insert is like enqueue, deleteMin is like dequeue

–  But the whole point is to use priorities instead of FIFO

Fall 2015 5 CSE373: Data Structures & Algorithms

Applications

Like all good ADTs, the priority queue arises often
–  Sometimes blatant, sometimes less obvious

•  Run multiple programs in the operating system
–  “critical” before “interactive” before “compute-intensive”
–  Maybe let users set priority level

•  Treat hospital patients in order of severity (or triage)
•  Select print jobs in order of decreasing length?

Fall 2015 6 CSE373: Data Structures & Algorithms

More applications

•  “Greedy” algorithms
–  May see an example when we study graphs in a few weeks

•  Forward network packets in order of urgency
•  Select most frequent symbols for data compression (cf. CSE143)
•  Sorting (first insert all, then repeatedly deleteMin)

–  Much like Homework 1 uses a stack to implement reverse

Fall 2015 7 CSE373: Data Structures & Algorithms

Finding a good data structure

•  Will show an efficient, non-obvious data structure for this ADT
–  But first let’s analyze some “obvious” ideas for n data items
–  All times worst-case; assume arrays “have room”

data insert algorithm / time deleteMin algorithm / time
unsorted array
unsorted linked list
sorted array
sorted linked list
binary search tree
AVL tree
(our) hash table

Fall 2015 8 CSE373: Data Structures & Algorithms

Need a good data structure!

•  Will show an efficient, non-obvious data structure for this ADT
–  But first let’s analyze some “obvious” ideas for n data items
–  All times worst-case; assume arrays “have room”

data insert algorithm / time deleteMin algorithm / time
unsorted array add at end O(1) search O(n)
unsorted linked list add at front O(1) search O(n)
sorted array search / shift O(n) stored in reverse O(1)
sorted linked list put in right place O(n) remove at front O(1)
binary search tree put in right place O(n) leftmost O(n)
AVL tree put in right place O(log n) leftmost O(log n)
(our) hash table add O(1) iterate over keys O(n)

Fall 2015 9 CSE373: Data Structures & Algorithms

More on possibilities

•  If priorities are random, binary search tree will likely do better
–  O(log n) insert and O(log n) deleteMin on average

•  One more idea: if priorities are 0, 1, …, k can use array of lists
–  insert: add to front of list at arr[priority], O(1)
–  deleteMin: remove from lowest non-empty list O(k)

•  We are about to see a data structure called a “binary heap”
–  O(log n) insert and O(log n) deleteMin worst-case

•  Possible because we don’t support unneeded
operations; no need to maintain a full sort

–  If items arrive in random order, then insert is O(1) on
average

Fall 2015 10 CSE373: Data Structures & Algorithms

Our data structure
A binary min-heap (or just binary heap or just heap) is:
•  Structure property: A complete binary tree
•  Heap property: The priority of every (non-root) node is greater

than the priority of its parent
–  Not a binary search tree

Fall 2015 11 CSE373: Data Structures & Algorithms

Structure Property: Completeness

•  A Binary Heap is a complete binary tree:
–  A binary tree with all levels full, with a possible exception

being the bottom level, which is filled left to right
Examples:

Fall 2015 12 CSE373: Data Structures & Algorithms

99 60 40

80 20

10

50 700

85 30

80

10

incomplete

40

20

400

complete

are these trees complete?

Heap Order Property

•  The priority of every (non-root) node is greater than (or equal to)
that of it’s parent.

Examples:

Fall 2015 13 CSE373: Data Structures & Algorithms

20

80

10

40

20

400 40

33

1

20

30

800 40

which of these are heaps?

heap not a heap

20

Our data structure
A binary min-heap (or just binary heap or just heap) is:
•  Structure property: A complete binary tree
•  Heap property: The priority of every (non-root) node is greater

than (or equal to) the priority of its parent
–  Not a binary search tree

Fall 2015 14 CSE373: Data Structures & Algorithms

Our data structure
A binary min-heap (or just binary heap or just heap) is:
•  Structure property: A complete binary tree
•  Heap property: The priority of every (non-root) node is greater

than (or equal to) the priority of its parent
–  Not a binary search tree

Fall 2015 15 CSE373: Data Structures & Algorithms

30

80

10

99 60 40

80 20

10

50 700

85
450

3

1

75

50

8 60

10

20

15

Our data structure
A binary min-heap (or just binary heap or just heap) is:
•  Structure property: A complete binary tree
•  Heap property: The priority of every (non-root) node is greater

than (or equal to) the priority of its parent
–  Not a binary search tree

Fall 2015 16 CSE373: Data Structures & Algorithms

15 30

80 20

10

99 60 40

80 20

10

50 700

85

not a heap a heap

So:
•  Where is the highest-priority item?
•  What is the height of a heap with n items?

450

3

1

75

50

8 60

not a heap

10 10

Operations: basic idea

•  findMin: return root.data
•  deleteMin:

1.   answer = root.data
2.  Move right-most node in last

row to root to restore
structure property

3.  “Percolate down” to restore
heap property

•  insert:
1.  Put new node in next position

on bottom row to restore
structure property

2.  “Percolate up” to restore
heap property

Fall 2015 17 CSE373: Data Structures & Algorithms

99 60 40

80 20

10

50 700

85

Overall strategy:
•  Preserve structure property
•  Break and restore heap

property

18

DeleteMin

3 4

9 8 5 7

10 6 9 11

1. Delete (and later return) value at
root node

Fall 2015 CSE373: Data Structures & Algorithms

19

2. Restore the Structure Property

•  We now have a “hole” at the root
–  Need to fill the hole with another

value

•  When we are done, the tree will have
one less node and must still be complete

3 4

9 8 5 7

10 6 9 11

3 4

9 8 5 7

10 6 9 11
Fall 2015 CSE373: Data Structures & Algorithms

20

3. Restore the Heap Property

Percolate down:
•  Keep comparing with both children
•  Swap with lesser child and go down one level

•  What happens if we swap with the larger child?
•  Done if both children are ≥ item or reached a leaf node

Why is this correct? What is the run time?

3 4

9 8 5 7

10

6 9 11

4

9 8 5 7

10

6 9 11

3

8 4

9 10 5 7

6 9 11

3
?

?

Fall 2015 CSE373: Data Structures & Algorithms

21

DeleteMin: Run Time Analysis

•  We will percolate down at most (height of heap) times
–  So run time is O(height of heap)

•  A heap is a complete binary tree

•  Height of a complete binary tree of n nodes?
–  height = ⎣ log2(n) ⎦

•  Run time of deleteMin is O(log n)

Fall 2015 CSE373: Data Structures & Algorithms

22

Insert

•  Add a value to the tree

•  Afterwards, structure and heap
properties must still be correct

•  Where do we insert the new value?

8 4

9 10 5 7

6 9 11

1

2

Fall 2015
CSE373: Data Structures & Algorithms

23

Insert: Maintain the Structure Property

•  There is only one valid tree shape after
we add one more node

•  So put our new data there and then
focus on restoring the heap property 8 4

9 10 5 7

6 9 11

1

2

Fall 2015 CSE373: Data Structures & Algorithms

24

Maintain the heap property

2

8 4

9 10 5 7

6 9 11

1

Percolate up:
•  Put new data in new location
•  If parent larger, swap with parent, and continue
•  Done if parent ≤ item or reached root

Why is this correct? What is the run time?

?

2
5

8 4

9 10 7

6 9 11

1

?

2

5

8

9 10 4 7

6 9 11

1 ?

Fall 2015 CSE373: Data Structures & Algorithms

25

Insert: Run Time Analysis

•  Like deleteMin, worst-case time proportional to tree height
–  O(log n)

•  But… deleteMin needs the “last used” complete-tree position
and insert needs the “next to use” complete-tree position
–  If “keep a reference to there” then insert and deleteMin

have to adjust that reference: O(log n) in worst case
–  Could calculate how to find it in O(log n) from the root given

the size of the heap
•  But it’s not easy
•  And then insert is always O(log n), promised O(1) on

average (assuming random arrival of items)

•  There’s a “trick”: don’t represent complete trees with explicit edges!

Fall 2015 CSE373: Data Structures & Algorithms

Fall 2013 26

Array Representation of Binary Trees

G E D

C B

A

J K H I

F

L

From node i:

left child: i*2
right child: i*2+1
parent: i/2

(wasting index 0 is
convenient for the
index arithmetic)

7

1

2 3

4 5 6

9 8 10 11 12

A B C D E F G H I J K L
0 1 2 3 4 5 6 7 8 9 10 11 12 13

implicit (array) implementation:

CSE373: Data Structures & Algorithms

Judging the array implementation

Plusses:
•  Less “wasted” space

–  Just index 0 and unused space on right
–  In conventional tree representation, one edge per node

(except for root), so n-1 wasted space (like linked lists)
–  Array would waste more space if tree were not complete

•  Multiplying and dividing by 2 is very fast (shift operations in
hardware)

•  Last used position is just index size

Minuses:
•  Same might-be-empty or might-get-full problems we saw with

stacks and queues (resize by doubling as necessary)

Plusses outweigh minuses: “this is how people do it”
Fall 2013 27 CSE373: Data Structures & Algorithms

