

CSE373: Data Structures & Algorithms Lecture 6: Priority Queues

Kevin Quinn Fall 2015

A Quick Note:

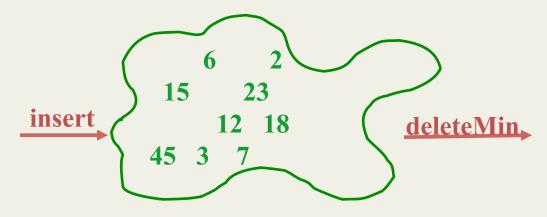
Homework 2 due tonight at 11pm!

A new ADT: Priority Queue

- Textbook Chapter 6
 - Nice to see a new and surprising data structure
- A priority queue holds compare-able data
 - Like dictionaries and unlike stacks and queues, need to compare items
 - Given x and y, is x less than, equal to, or greater than y
 - Meaning of the ordering can depend on your data
 - Many data structures require this: dictionaries, sorting
 - Integers are comparable, so will use them in examples
 - But the priority queue ADT is much more general
 - Typically two fields, the priority and the data

Priorities

- Each item has a "priority"
 - The lesser item is the one with the greater priority
 - So "priority 1" is more important than "priority 4"
 - (Just a convention, think "first is best")
- Operations:
 - insert
 - deleteMin
 - is empty



- Key property: deleteMin returns and deletes the item with greatest priority (lowest priority value)
 - Can resolve ties arbitrarily

Example

- Analogy: insert is like enqueue, deleteMin is like dequeue
 - But the whole point is to use priorities instead of FIFO

Applications

Like all good ADTs, the priority queue arises often

- Sometimes blatant, sometimes less obvious
- Run multiple programs in the operating system
 - "critical" before "interactive" before "compute-intensive"
 - Maybe let users set priority level
- Treat hospital patients in order of severity (or triage)
- Select print jobs in order of decreasing length?

More applications

- "Greedy" algorithms
 - May see an example when we study graphs in a few weeks
- Forward network packets in order of urgency
- Select most frequent symbols for data compression (cf. CSE143)
- Sorting (first insert all, then repeatedly deleteMin)
 - Much like Homework 1 uses a stack to implement reverse

Finding a good data structure

- Will show an efficient, non-obvious data structure for this ADT
 - But first let's analyze some "obvious" ideas for n data items
 - All times worst-case; assume arrays "have room"

unsorted array
unsorted linked list
sorted linked list
binary search tree

AVL tree

(our) hash table

Need a good data structure!

- Will show an efficient, non-obvious data structure for this ADT
 - But first let's analyze some "obvious" ideas for n data items
 - All times worst-case; assume arrays "have room"

data	insert algorithm / tir	me	deleteMin algorithm / time			
unsorted array	add at end	<i>O</i> (1)	search	<i>O</i> (<i>n</i>)		
unsorted linked list	add at front	O(1)	search	<i>O</i> (<i>n</i>)		
sorted array	search / shift	<i>O</i> (<i>n</i>)	stored in reverse	O(1)		
sorted linked list	put in right place	<i>O</i> (<i>n</i>)	remove at front	O(1)		
binary search tree	put in right place	<i>O</i> (<i>n</i>)	leftmost	<i>O</i> (<i>n</i>)		
AVL tree	put in right place	O(10	g n) leftmost O(3	Log n)		
(our) hash table	add	O(1)	iterate over key	s O(n)		
Fall 2015	CSE373: Data Structures	s & Algoi	rithms	9		

More on possibilities

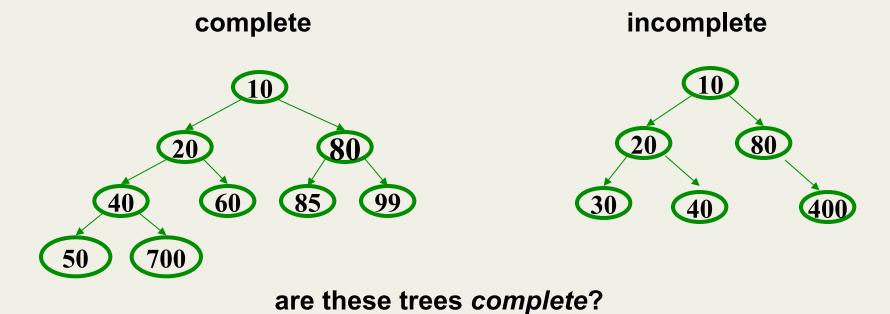
- If priorities are random, binary search tree will likely do better
 - $O(\log n)$ insert and $O(\log n)$ deleteMin on average
- One more idea: if priorities are 0, 1, ..., k can use array of lists
 - insert: add to front of list at arr[priority], O(1)
 - deleteMin: remove from lowest non-empty list O(k)
- We are about to see a data structure called a "binary heap"
 - $O(\log n)$ insert and $O(\log n)$ deleteMin worst-case
 - Possible because we don't support unneeded operations; no need to maintain a full sort
 - If items arrive in random order, then insert is O(1) on average

- Structure property: A complete binary tree
- Heap property: The priority of every (non-root) node is greater than the priority of its parent
 - Not a binary search tree

Structure Property: Completeness

- A Binary Heap is a complete binary tree:
 - A binary tree with all levels full, with a possible exception being the bottom level, which is filled left to right

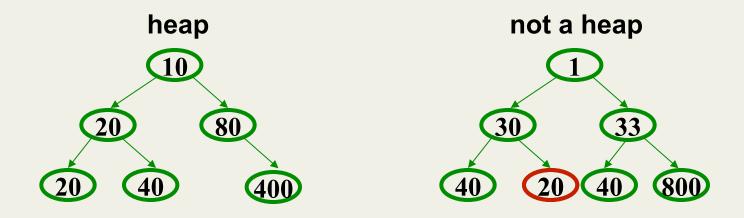
Examples:



Heap Order Property

 The priority of every (non-root) node is greater than (or equal to) that of it's parent.

Examples:



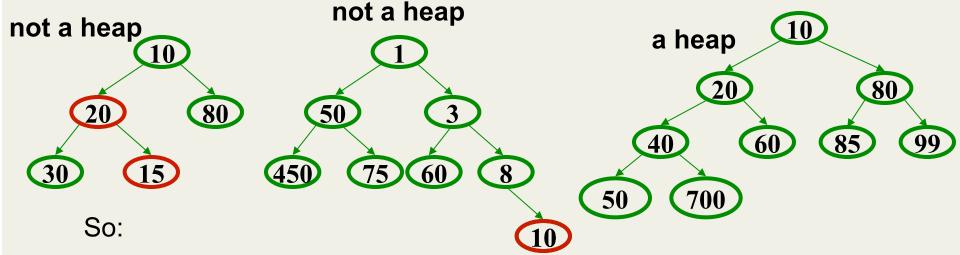
which of these are heaps?

- Structure property: A complete binary tree
- Heap property: The priority of every (non-root) node is greater than (or equal to) the priority of its parent
 - Not a binary search tree

- Structure property: A complete binary tree
- Heap property: The priority of every (non-root) node is greater than (or equal to) the priority of its parent
 - Not a binary search tree



- Structure property: A complete binary tree
- Heap property: The priority of every (non-root) node is greater than (or equal to) the priority of its parent
 - Not a binary search tree



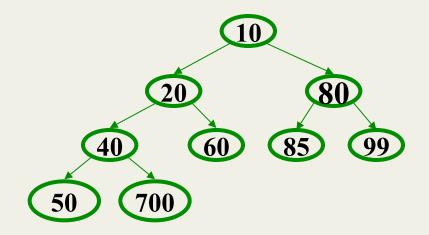
- Where is the highest-priority item?
- What is the height of a heap with n items?

Operations: basic idea

- findMin: return root.data
- deleteMin:
 - 1. answer = root.data
 - 2. Move right-most node in last row to root to restore structure property
 - 3. "Percolate down" to restore heap property

• insert:

- Put new node in next position on bottom row to restore structure property
- 2. "Percolate up" to restore heap property

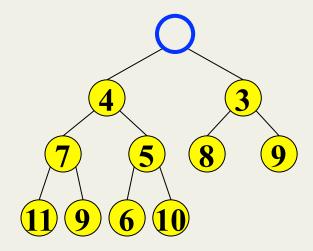


Overall strategy:

- Preserve structure property
- Break and restore heap property

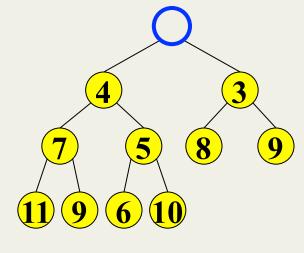
DeleteMin

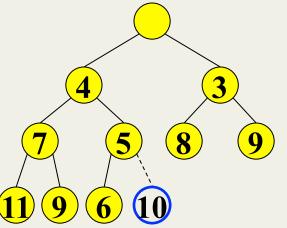
1. Delete (and later return) value at root node



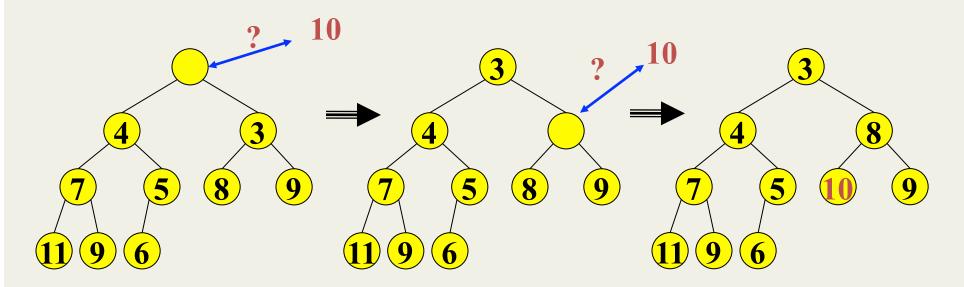
2. Restore the Structure Property

- We now have a "hole" at the root
 - Need to fill the hole with another value
- When we are done, the tree will have one less node and must still be complete





3. Restore the Heap Property



Percolate down:

- Keep comparing with both children
- Swap with lesser child and go down one level
 - What happens if we swap with the larger child?
- Done if both children are ≥ item or reached a leaf node

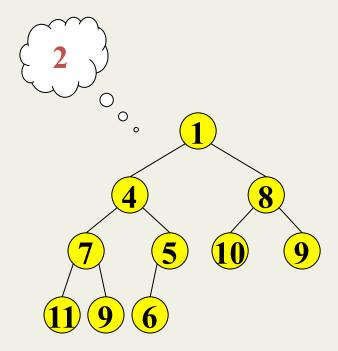
Why is this correct? What is the run time?

DeleteMin: Run Time Analysis

- We will percolate down at most (height of heap) times
 - So run time is O(height of heap)
- A heap is a complete binary tree
- Height of a complete binary tree of n nodes?
 - height = $\lfloor \log_2(n) \rfloor$
- Run time of **deleteMin** is $O(\log n)$

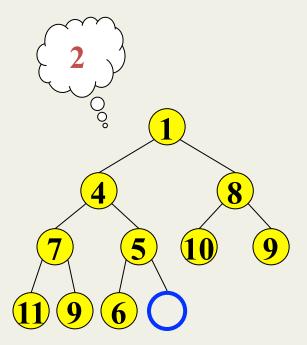
Insert

- Add a value to the tree
- Afterwards, structure and heap properties must still be correct
- Where do we insert the new value?

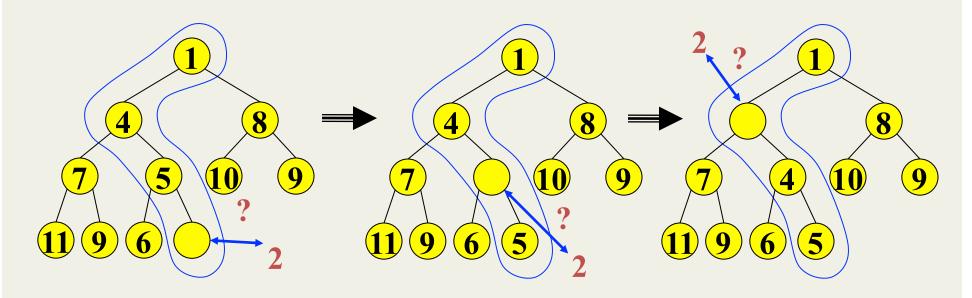


Insert: Maintain the Structure Property

- There is only one valid tree shape after we add one more node
- So put our new data there and then focus on restoring the heap property



Maintain the heap property



Percolate up:

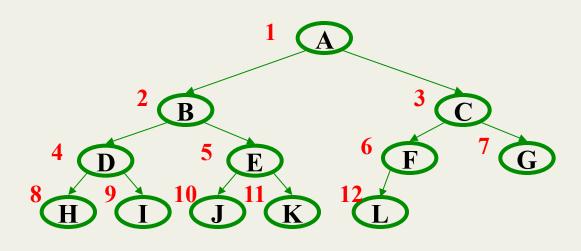
- Put new data in new location
- If parent larger, swap with parent, and continue
- Done if parent ≤ item or reached root

Why is this correct? What is the run time?

Insert: Run Time Analysis

- Like deleteMin, worst-case time proportional to tree height
 - $-O(\log n)$
- But... deleteMin needs the "last used" complete-tree position and insert needs the "next to use" complete-tree position
 - If "keep a reference to there" then insert and deleteMin have to adjust that reference: O(log n) in worst case
 - Could calculate how to find it in O(log n) from the root given the size of the heap
 - But it's not easy
 - And then insert is always $O(\log n)$, promised O(1) on average (assuming random arrival of items)
- There's a "trick": don't represent complete trees with explicit edges!

Array Representation of Binary Trees



From node i:

left child: i*2

right child: i*2+1

parent: i/2

(wasting index 0 is convenient for the index arithmetic)

implicit (array) implementation:

	A	В	C	D	E	F	G	Н	I	J	K	L	
0	1	2	3	4	5	6	7	8	9	10	11	12	13

Judging the array implementation

Plusses:

- Less "wasted" space
 - Just index 0 and unused space on right
 - In conventional tree representation, one edge per node (except for root), so n-1 wasted space (like linked lists)
 - Array would waste more space if tree were not complete
- Multiplying and dividing by 2 is very fast (shift operations in hardware)
- Last used position is just index size

Minuses:

 Same might-be-empty or might-get-full problems we saw with stacks and queues (resize by doubling as necessary)

Plusses outweigh minuses: "this is how people do it"