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A Quick Note: 

•  Homework 2 due tonight at 11pm! 
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A new ADT: Priority Queue 

•  Textbook Chapter 6 
–  Nice to see a new and surprising data structure 

•  A priority queue holds compare-able data 
–  Like dictionaries and unlike stacks and queues, need to 

compare items 
•  Given x and y, is x less than, equal to, or greater than y 
•  Meaning of the ordering can depend on your data 
•  Many data structures require this: dictionaries, sorting 

–  Integers are comparable, so will use them in examples 
•  But the priority queue ADT is much more general 
•  Typically two fields, the priority and the data 
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Priorities 
•  Each item has a “priority” 

–  The lesser item is the one with the greater priority 
–  So “priority 1” is more important than “priority 4” 
–  (Just a convention, think “first is best”) 

•  Operations:  
–  insert 
–  deleteMin 
–  is_empty 

•  Key property: deleteMin  returns and deletes the item with 
greatest priority (lowest priority value) 
–  Can resolve ties arbitrarily 
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insert deleteMin 

        6        2 
  15        23 
          12   18 
45   3    7 



Example 

 insert e1 with priority 5 
 insert e2 with priority 3 
 insert e3 with priority 4 
 a = deleteMin  // a = e2 
 b = deleteMin  // b = e3 
 insert e4 with priority 2 
 insert e5 with priority 6 
 c = deleteMin  // c = e4 
 d = deleteMin   // d = e1 

 
•  Analogy: insert is like enqueue, deleteMin is like dequeue 

–  But the whole point is to use priorities instead of FIFO 
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Applications 

Like all good ADTs, the priority queue arises often 
–  Sometimes blatant, sometimes less obvious 

•  Run multiple programs in the operating system 
–  “critical” before “interactive” before “compute-intensive” 
–  Maybe let users set priority level 

•  Treat hospital patients in order of severity (or triage) 
•  Select print jobs in order of decreasing length? 
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More applications 

•  “Greedy” algorithms 
–  May see an example when we study graphs in a few weeks 

•  Forward network packets in order of urgency 
•  Select most frequent symbols for data compression (cf. CSE143) 
•  Sorting (first insert all, then repeatedly deleteMin) 

–  Much like Homework 1 uses a stack to implement reverse 
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Finding a good data structure 

•  Will show an efficient, non-obvious data structure for this ADT 
–  But first let’s analyze some “obvious” ideas for n data items 
–  All times worst-case; assume arrays “have room” 

data          insert algorithm / time      deleteMin algorithm / time 
unsorted array       
unsorted linked list 
sorted array 
sorted linked list 
binary search tree 
AVL tree 
(our) hash table 
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Need a good data structure! 

•  Will show an efficient, non-obvious data structure for this ADT 
–  But first let’s analyze some “obvious” ideas for n data items 
–  All times worst-case; assume arrays “have room” 

data          insert algorithm / time      deleteMin algorithm / time 
unsorted array           add at end          O(1)      search                O(n) 
unsorted linked list     add at front         O(1)      search                O(n) 
sorted array               search / shift       O(n)      stored in reverse   O(1) 
sorted linked list          put in right place O(n)         remove at front   O(1) 
binary search tree      put in right place O(n)  leftmost               O(n) 
AVL tree                     put in right place O(log n) leftmost       O(log n) 
(our) hash table          add                     O(1)        iterate over keys O(n) 
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More on possibilities 

•  If priorities are random, binary search tree will likely do better 
–  O(log n) insert and O(log n) deleteMin on average 

 

•  One more idea: if priorities are 0, 1, …, k can use array of  lists 
–  insert: add to front of list at arr[priority], O(1) 
–  deleteMin: remove from lowest non-empty list O(k) 

•  We are about to see a data structure called a “binary heap” 
–  O(log n) insert and O(log n) deleteMin worst-case 

•  Possible because we don’t support unneeded 
operations; no need to maintain a full sort 

–  If items arrive in random order, then insert is O(1) on 
average 
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Our data structure 
A binary min-heap (or just binary heap or just heap) is: 
•  Structure property: A complete binary tree  
•  Heap property: The priority of every (non-root) node is greater 

than the priority of its parent 
–  Not a binary search tree 
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Structure Property: Completeness 

•  A Binary Heap is a complete binary tree: 
–  A binary tree with all levels full, with a possible exception 

being the bottom level, which is filled left to right 
Examples: 
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Heap Order Property 

•  The priority of every (non-root) node is greater than (or equal to) 
that of it’s parent.  

 
Examples: 
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30 
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which of these are heaps? 
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Our data structure 
A binary min-heap (or just binary heap or just heap) is: 
•  Structure property: A complete binary tree  
•  Heap property: The priority of every (non-root) node is greater 

than (or equal to) the priority of its parent 
–  Not a binary search tree 
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Our data structure 
A binary min-heap (or just binary heap or just heap) is: 
•  Structure property: A complete binary tree  
•  Heap property: The priority of every (non-root) node is greater 

than (or equal to) the priority of its parent 
–  Not a binary search tree 
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Our data structure 
A binary min-heap (or just binary heap or just heap) is: 
•  Structure property: A complete binary tree  
•  Heap property: The priority of every (non-root) node is greater 

than (or equal to) the priority of its parent 
–  Not a binary search tree 
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So: 
•  Where is the highest-priority item? 
•  What is the height of a heap with n items? 
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Operations: basic idea 

•  findMin: return root.data 
•  deleteMin:  

1.   answer = root.data 
2.  Move right-most node in last 

row to root to restore 
structure property 

3.  “Percolate down” to restore 
heap property 

•  insert: 
1.  Put new node in next position 

on bottom row to restore 
structure property 

2.  “Percolate up” to restore 
heap property 

Fall 2015 17 CSE373: Data Structures & Algorithms 

99 60 40 

80 20 

10 

50 700 

85 

Overall strategy: 
•  Preserve structure property 
•  Break and restore heap 

property 
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DeleteMin 

3 4 

9 8 5 7 

10 6 9 11 

1. Delete (and later return) value at 
root node 
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2. Restore the Structure Property 

•  We now have a “hole” at the root 
–  Need to fill the hole with another 

value 

•  When we are done, the tree will have 
one less node and must still be complete 

3 4 

9 8 5 7 

10 6 9 11 

3 4 

9 8 5 7 

10 6 9 11 
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3. Restore the Heap Property 

Percolate down:  
•   Keep comparing with both children  
•   Swap with lesser child and go down one level 

•  What happens if we swap with the larger child? 
•   Done if both children are ≥ item or reached a leaf node 
 
Why is this correct?  What is the run time? 
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DeleteMin: Run Time Analysis 

•  We will percolate down at most (height of heap) times 
–  So run time is O(height of heap) 

•  A heap is a complete binary tree 

•  Height of a complete binary tree of n nodes? 
–  height = ⎣ log2(n) ⎦ 

•  Run time of deleteMin is O(log n) 
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Insert 

•  Add a value to the tree 

•  Afterwards, structure and heap 
properties must still be correct 

•  Where do we insert the new value? 
 

8 4 

9 10 5 7 

6 9 11 

1 

2 

Fall 2015 
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Insert: Maintain the Structure Property 

•  There is only one valid tree shape after 
we add one more node 

•  So put our new data there and then 
focus on restoring the heap property 8 4 

9 10 5 7 

6 9 11 

1 

2 
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Maintain the heap property 

2 

8 4 

9 10 5 7 

6 9 11 

1 

Percolate up: 
•   Put new data in new location 
•   If parent larger, swap with parent, and continue 
•   Done if parent ≤ item or reached root 
 
Why is this correct?  What is the run time? 
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Insert: Run Time Analysis 

•  Like deleteMin, worst-case time proportional to tree height 
–  O(log n) 

•  But… deleteMin needs the “last used” complete-tree position 
and insert needs the “next to use” complete-tree position 
–  If “keep a reference to there” then insert and deleteMin 

have to adjust that reference: O(log n) in worst case 
–  Could calculate how to find it in O(log n) from the root given 

the size of the heap 
•  But it’s not easy 
•  And then insert is always O(log n), promised O(1) on 

average (assuming random arrival of items) 

•  There’s a “trick”: don’t represent complete trees with explicit edges! 
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Array Representation of Binary Trees 

G E D 

C B 

A 

J K H I 

F 

L 

From node i: 
 
left child: i*2 
right child: i*2+1 
parent: i/2 
 
(wasting index 0 is 
convenient for the 
index arithmetic) 

7 

1 

2 3 

4 5 6 

9 8 10 11 12 

A B C D E F G H I J K L 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 

implicit (array) implementation: 
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Judging the array implementation 

Plusses: 
•  Less “wasted” space 

–  Just index 0 and unused space on right 
–  In conventional tree representation, one edge per node 

(except for root), so n-1 wasted space (like linked lists) 
–  Array would waste more space if tree were not complete 

•  Multiplying and dividing by 2 is very fast (shift operations in 
hardware) 

•  Last used position is just index size 

Minuses: 
•  Same might-be-empty or might-get-full problems we saw with 

stacks and queues (resize by doubling as necessary) 
 

Plusses outweigh minuses: “this is how people do it” 
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