CSE373: Data Structures & Algorithms
Lecture 17: Hash Collisions

Kevin Quinn
Fall 2015

Hash Tables: Review

« Aim for constant-time (i.e., O(1)) £ind, insert, and delete
— “On average” under some reasonable assumptions

A hash table is an array of some fixed size hash table
— But growable as we’ll see 0
client hash table library

collision? collision

F Emmms) int Emmmmw) table-index |

resolution

TableSize —1

Fall 2013 CSE373: Data Structures & Algorithms 2

Collision resolution

Collision:
When two keys map to the same location in the hash table

We try to avoid it, but number-of-keys exceeds table size

So hash tables should support collision resolution
— |deas?

Fall 2013 CSE373: Data Structures & Algorithms

Separate Chaining

Chaining:
All keys that map to the same

table location are keptin alist (a.k.a. a
“chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42
with mod hashing
and TableSize = 10

O 00 I3 O »n B W N = O
~ -~~~ |~ |~~~

Fall 2013 CSE373: Data Structures & Algorithms

Separate Chaining

10

O 0 3 O D h~h W N — O

~ | T~ | T~ | T~ | T~ | Y~]~ | | >~

Fall 2013

Chaining:
All keys that map to the same

table location are kept in a list
(a.k.a. a “chain” or “bucket”)

As easy as it sounds
Example:
insert 10, 22, 107, 12, 42

with mod hashing
and TableSize = 10

CSE373: Data Structures & Algorithms

Separate Chaining

>10

0

1 /
2

3 /
4 /
5 /
6 /
7 /
8 /
9 /

Fall 2013

>22

Chaining:
All keys that map to the same

table location are kept in a list
(a.k.a. a “chain” or “bucket”)

As easy as it sounds
Example:
insert 10, 22, 107, 12, 42

with mod hashing
and TableSize = 10

CSE373: Data Structures & Algorithms

Separate Chaining

0 J100/ Chaining:

1 / All keys that map to the same
) o table location are kept in a list
; / (a.k.a. a “chain” or “bucket”)

4 / As easy as it sounds

5 /

6 | / Example:

7 107 / insert 10, 22, 107, 12, 42

8 / with mod hashing

9 / and TableSize = 10

Fall 2013 CSE373: Data Structures & Algorithms

Separate Chaining

0 J100/ Chaining:

1 / All keys that map to the same
table location are kept in a list

»12 »22| / :

2 / (a.k.a. a “chain” or “bucket”)

3

4 / As easy as it sounds

5 /

6 | / Example:

7 107 / insert 10, 22, 107, 12, 42

8 / with mod hashing

9 / and TableSize = 10

Fall 2013 CSE373: Data Structures & Algorithms

Separate Chaining

»10| /

Chaining:
All keys that map to the same

42

table location are kept in a list

0

1 /
2

3 /
4 /
5 /
6 /
7

8 /
9 /

Fall 2013

107

(a.k.a. a “chain” or “bucket”)
As easy as it sounds

Example:

insert 10, 22, 107, 12, 42

with mod hashing
and TableSize = 10

CSE373: Data Structures & Algorithms

Thoughts on chaining

* Worst-case time for £ind?
— Linear
— But only with really bad luck or bad hash function

— So not worth avoiding (e.g., with balanced trees at each
bucket)

« Beyond asymptotic complexity, some “data-structure
engineering” may be warranted

— Linked list vs. array vs. chunked list (lists should be short!)
— Move-to-front

— Maybe leave room for 1 element (or 2?) in the table itself, to
optimize constant factors for the common case

» A time-space trade-off...

Fall 2013 CSE373: Data Structures & Algorithms 10

Time vs. space (constant factors only here)

0 {10] / 0 1 10/
1 / | /| X
2 42 12 22| / 2 | 42 12 22| /
3 / 3 /| X
4 / 4 /| X
5 / 5 /| X
6 / 6 /| X
7 107 / 7 1107/
] / 8 /| X
9 / 9 /| X

Fall 2013 CSE373: Data Structures & Algorithms 11

More rigorous chaining analysis

Definition: The load factor, A, of a hash table is

N <— number of elements

A=
TableSize

Under chaining, the average number of elements per bucket is A

So if some inserts are followed by random finds, then on average:
« Each “unsuccessful” £ind compares against A items

So we like to keep A fairly low (e.g., 1 or 1.5 or 2) for chaining

Fall 2013 CSE373: Data Structures & Algorithms 12

Alternative: Use empty space in the table

* Another simple idea: If h (key) is already full, 0 /
— try (h(key) + 1) % TableSize. Iffull, 1 /

— try (h(key) + 2) % TableSize. If full, 7 /

— try (h(key) + 3) % TableSize. Iffull... 3 /

4 /

 Example: insert 38, 19, 8, 109, 10 5)
6 /

7 /

8 38

9 /

Fall 2013 CSE373: Data Structures & Algorithms

13

Alternative: Use empty space in the table

* Another simple idea: If h (key) is already full, 0 /
— try (h(key) + 1) % TableSize. Iffull, 1 /

— try (h(key) + 2) % TableSize. If full, 7 /

— try (h(key) + 3) % TableSize. Iffull... 3 /

4 /

 Example: insert 38, 19, 8, 109, 10 5)
6 /

7 /

8 38

9 19

Fall 2013 CSE373: Data Structures & Algorithms

14

Alternative: Use empty space in the table

* Another simple idea: If h (key) is already full, 0 8
— try (h(key) + 1) % TableSize. Iffull, 1 /

— try (h(key) + 2) % TableSize. If full, 7 /

— try (h(key) + 3) % TableSize. Iffull... 3 /

4 /

 Example: insert 38, 19, 8, 109, 10 5)
6 /

7 /

8 38

9 19

Fall 2013 CSE373: Data Structures & Algorithms

15

Alternative: Use empty space in the table

* Another simple idea: If h (key) is already full,
— try (h(key) + 1) % TableSize. Iffull,
— try (h(key) + 2) % TableSize. If full,
— try (h(key) + 3) %

« Example: insert 38, 19, 8, 109, 10

Fall 2013 CSE373: Data Structures & Algorithms

TableSize. Iffull...

O 0 3 O D K~ W N —= O

109

~ | T~ | T~ | Y~ | | ~

38

19

16

Alternative: Use empty space in the table

* Another simple idea: If h (key) is already full,
— try (h(key) + 1) % TableSize. Iffull,
— try (h(key) + 2) % TableSize. If full,
— try (h(key) + 3) %

« Example: insert 38, 19, 8, 109, 10

Fall 2013 CSE373: Data Structures & Algorithms

TableSize. Iffull...

O 0 3 O D K~ W N —= O

109

10

~ | T~ | -~ | | ~

38

19

17

Open addressing

This is one example of open addressing

In general, open addressing means resolving collisions by trying a
sequence of other positions in the table

Trying the next spot is called probing
— We just did linear probing
- it probe was (h(key) + i) % TableSize

— In general have some probe function £ and use
h(key) + £(1) % TableSize

Open addressing does poorly with high load factor A
— So want larger tables
— Too many probes means no more O(1)

Fall 2013 CSE373: Data Structures & Algorithms

Terminology

We and the book use the terms
— “chaining” or “separate chaining”
— “open addressing”

Very confusingly,
— “open hashing” is a synonym for “chaining”
— “closed hashing” is a synonym for “open addressing”

(If it makes you feel any better,
most trees in CS grow upside-down ©)

&

Fall 2013 CSE373: Data Structures & Algorithms

Other operations

insert finds an open table position using a probe function

What about £ind?
— Must use same probe function to “retrace the trail” for the data

— Unsuccessful search when reach empty position

What about delete?
— Must use “lazy” deletion. Why?
« Marker indicates “no data here, but don’t stop probing”

— Note: delete with chaining is plain-old list-remove

Fall 2013 CSE373: Data Structures & Algorithms 20

(Primary) Clustering

It turns out linear probing is a bad idea, even though the probe
function is quick to compute (which is a good thing)

PP I\ L
Tends to produce N uuuﬁ@wm”uwwuuuwuz::umw””
clusters, which lead to e Uummmmuuﬁimuuumu s
long probing sequences - £ gmmwuummuuumummu o
« Called primary ui:imwmmmuumwuuuméﬁémizuuu
: L o0il®
guﬂeqng o uumuwmmmmu&émuuuwmufwumwuu
» Saw this starting in R R RN }
our example e wummmwumwumm”

uumummmm.ummwmggéﬁéwwummuu
uu@umwmmuf;ﬁéég@éémmmumwuu

e eeeneeS [R. Sedgewick]

Fall 2013 CSE373: Data Structures & Algorithms 21

Analysis of Linear Probing

« Trivial fact: For any A < 7, linear probing will find an empty slot
— Itis “safe” in this sense: no infinite loop unless table is full

* Non-trivial facts we won'’t prove:
Average # of probes given A (in the limit as TableSize —x)
— Unsuccessful search: 1 (1
1+)

2((1-AY
— Successful search: 1 1

(14—

2 ((1- /1))

* This is pretty bad: need to leave sufficient empty space in the
table to get decent performance

Fall 2013 CSE373: Data Structures & Algorithms 22

In a chart

* Linear-probing performance degrades rapidly as table gets full
— (Formula assumes “large table” but point remains)

Average # of Probes

Linear Probing Linear Probing
16.00 w» 350.00
14.00] 2 30000
12.00 / g 250.00
10.00 / Y= 200.00
8.00 . . o . .
’ / linear probing * 150.00 linear probing
6.00 / not found Q not found
4.00 80 100.00
' - linear probing . 50.00 / linear probing
2.00 - found > ' 4{/ / found
0.00 < 000 -
— 00 N N OO O M O ™~ < —~ 0 — O OO 0™~ W I T N N
O O 4 N AN O < 1 W W IS~ O 4 A4 N NN < 1N W I~ 0 O
OO0 00000 o oo o o S0 oo oo oo o o o
Load Factor Load Factor

« By comparison, chaining performance is linear in A and has no
trouble with A>1

Fall 2013 CSE373: Data Structures & Algorithms 23

Quadratic probing

We can avoid primary clustering by changing the probe function
(h(key) + £(1i)) % TableSize

A common technique is quadratic probing:

f(i) = i
— So probe sequence is:

« Oth probe: h(key) % TableSize
1t probe: (h(key) + 1) % TableSize
2"d probe: (h(key) + 4) % TableSize
3 probe: (h(key) + 9) % TableSize

I'" probe: (h(key) + i?) % TableSize

Intuition: Probes quickly “leave the neighborhood”

Fall 2013 CSE373: Data Structures & Algorithms 24

Quadratic Probing Example

Fall 2013

O 0 3 O D K~ W N —= O

TableSize=10

Insert:

89

18
49

58

79

CSE373: Data Structures & Algorithms

25

Quadratic Probing Example

Fall 2013

O 0 3 O D K~ W N —= O

TableSize=10

Insert:

89

18
49

58

79

89

CSE373: Data Structures & Algorithms

26

Quadratic Probing Example

Fall 2013

O 0 3 O D K~ W N —= O

TableSize=10

Insert:

89

18
49

58

79

18

89

CSE373: Data Structures & Algorithms

27

Quadratic Probing Example

0 49 TableSize=10
1 Insert:
5 89
18
> 49
4 58
5 79
6
7
8 18
9 89
Fall 2013 CSE373: Data Structures & Algorithms

28

Quadratic Probing Example

Fall 2013

O 0 3 O D K~ W N —= O

49 TableSize=10
Insert:
58 &
18
49
58
79
18
89

CSE373: Data Structures & Algorithms

29

Quadratic Probing Example

Fall 2013

O 0 3 O D K~ W N —= O

49 TableSize=10
Insert:
. 89
18
7 49
58
79
18
89

CSE373: Data Structures & Algorithms

30

Another Quadratic Probing Example

Fall 2013

A N A W N = O

TableSize =7

Insert:

76 (76 % 7 =
40 (40 % 7 =
48 (48 % 7 =
5 (9%7=
55 (55 % 7 =
47 (47 % 7 =

CSE373: Data Structures & Algorithms

6)
o)
6)
o)
6)
5)

31

Another Quadratic Probing Example

Fall 2013

A N A W N = O

76

TableSize =7

Insert:

76 (76 % 7 =
40 (40 % 7 =
48 (48 % 7 =
5 (9%7=
55 (55 % 7 =
47 (47 % 7 =

CSE373: Data Structures & Algorithms

6)
o)
6)
o)
6)
5)

32

Another Quadratic Probing Example

Fall 2013

A N A W N = O

40

76

TableSize =7

Insert:

76 (76 % 7 =
40 (40 % 7 =
48 (48 % 7 =
5 (9%7=
55 (55 % 7 =
47 (47 % 7 =

CSE373: Data Structures & Algorithms

6)
o)
6)
o)
6)
5)

33

Another Quadratic Probing Example

Fall 2013

A N A W N = O

48

40

76

TableSize =7

Insert:

76 (76 % 7 =
40 (40 % 7 =
48 (48 % 7 =
5 (9%7=
55 (55 % 7 =
47 (47 % 7 =

CSE373: Data Structures & Algorithms

6)
o)
6)
o)
6)
5)

34

Another Quadratic Probing Example

Fall 2013

A N A W N = O

48

40

76

TableSize =7

Insert:

76 (76 % 7 = 06)
40 (40 % 7 =5)
48 (48 % 7 = 06)
5 (95%7=05)
55 (55 % 7 = 6)
47 (47 % 7 = 5)

CSE373: Data Structures & Algorithms

35

Another Quadratic Probing Example

Fall 2013

A N A W N = O

48

55

40

76

TableSize =7

Insert:

76 (76 % 7 =
40 (40 % 7 =
48 (48 % 7 =
5 (9%7=
55 (55 % 7 =
47 (47 % 7 =

CSE373: Data Structures & Algorithms

6)
o)
6)
o)
6)
5)

36

Another Quadratic Probing Example

A N A W N = O

48

5

55

40

76

TableSize =7

Insert:

76 (76 % 7 = 06)
40 (40 % 7 =5)
48 (48 % 7 = 06)
5 (95%7=05)
55 (55 % 7 = 6)
47 (47 % 7 = 5)

Doh!: Foralln, ((n*n) +5) % 7 is 0, 2, 5, or 6
» Excel shows takes “at least” 50 probes and a pattern

* Proof uses induction and (n?+5) % 7 = ((n-7)2+5
* Infact, for all cand k, (n?+c) % k = ((n-k)?%+c

Fall 2013

CSE373: Data Structures & Algorithms

-’

From Bad News to Good News

« Bad news:

— Quadratic probing can cycle through the same full indices,
never terminating despite table not being full

e Good news:

— |lf TableSize is prime and A < %z, then quadratic probing will
find an empty slot in at most TableSize/2 probes

— So: If you keep A < 2 and TableSize is prime, no need to
detect cycles
— Optional
» Also, slightly less detailed proof in textbook
» Key fact: Forprime Tand 0 < i,j < T/2wherei = 7,
(k + i%) $ T = (k + j%) % T (i.e., noindex repeat)

Fall 2013 CSE373: Data Structures & Algorithms 38

Clustering reconsidered

* Quadratic probing does not suffer from primary clustering:
no problem with keys initially hashing to the same neighborhood

« Butit's no help if keys initially hash to the same index
— Called secondary clustering

« Can avoid secondary clustering with a probe function that
depends on the key: double hashing...

Fall 2013 CSE373: Data Structures & Algorithms 39

Double hashing

|dea:

— Given two good hash functions h and g, it is very unlikely
that for some key, h(key) == g(key)

— So make the probe function £ (i) = i*g(key)

Probe sequence:

« Oth probe: h(key) % TableSize

* 1stprobe: (h(key) + g(key)) $ TableSize
2nd probe: (h(key) + 2*g(key)) % TableSize
3 probe: (h(key) + 3*g(key)) % TableSize

I'" probe: (h(key) + i*g(key)) % TableSize

Detail: Make sure g (key) cannot be 0

Fall 2013 CSE373: Data Structures & Algorithms

40

Double-hashing analysis

* Intuition: Because each probe is “jumping” by g (key) each
time, we “leave the neighborhood” and “go different places from

other initial collisions”

« But we could still have a problem like in quadratic probing where
we are not “safe” (infinite loop despite room in table)

— It is known that this cannot happen in at least one case:

(o)

e h(key) = key $ p

* g(key) = q - (key % q)
e2<g<p

« p and g are prime

Fall 2013 CSE373: Data Structures & Algorithms 41

More double-hashing facts

« Assume “uniform hashing”
— Means probability of g (keyl) % p == g(key2) % p IS
1/p

* Non-trivial facts we won’t prove:
Average # of probes given A (in the limit as TableSize —)

— Unsuccessful search (intuitive): 1
1-A

— Successful search (less intuitive): 4 1
A 1-A

« Bottom line: unsuccessful bad (but not as bad as linear probing),
but successful is not nearly as bad

Fall 2013 CSE373: Data Structures & Algorithms 42

Charts

Uniform Hashing

Uniform Hashing

8 7.00 8 120.00
o 6.00 2 100.00
© 500 / o
o ' / a. 80.00
“= 4.00 “
o - P O 60.00
* 300 uniform hashing i+ ' = uniform hashing
v / not found) not found
80 200 ——— & 40.00
a 1.00 = uniform hashing a 20.00 uniform hashing
> found > é found
<< 0.00 < 0.00
= 00 1N N O O N O ™~ < —~ 0 = O OO 0™~ W W ST N AN o
OO A NAN®MmT O NY NN O ddNmMmT O~ QO
O O OO0 OO0 oo o o o o O OO0 OO0 0o oo o o
Load Factor Load Factor
Linear Probing Linear Probing
» 16.00 w 350.00
2 1400 L 300.00
2 12.00 2 25000
S 10.00 a
S . / %5 200.00
E=3 8.00 / = linear probing * 150.00 linear probing
o 600 not found Q not found
?Up 4.00 ?é’ 100.00
E - - linear probing th 50.00 / linear probing
S 200 found > ' ﬁ ! found
< 0.0 < 000
= 0 L N O O MmO ™~ < —~ 0 = O O 00 ™~ W N T NN N
OO0 A NANMS NN WONN O = @ N mMmM<T N ON QO
O OO0 OO0 00O oo o o o O O OO0 OO0 oo o o o
Load Factor Load Factor

Rehashing

« As with array-based stacks/queues/lists, if table gets too full,
create a bigger table and copy everything

« With chaining, we get to decide what “too full” means
— Keep load factor reasonable (e.g., < 1)?
— Consider average or max size of non-empty chains?

« For open addressing, half-full is a good rule of thumb

 New table size
— Twice-as-big is a good idea, except, uhm, that won't be prime!
— S0 go about twice-as-big

— Can have a list of prime numbers in your code since you won't
grow more than 20-30 times

Fall 2013 CSE373: Data Structures & Algorithms 44

