Case #1: Example

Insert(6)
Insert(3)
Insert(1)

Third insertion violates balance property
« happens to be at the root

What is the only way to fix this?

Fall 2015 CSE373: Data Structures & Algorithms

Fix: Apply “Single Rotation”

« Single rotation: The basic operation we'll use to rebalance
— Move child of unbalanced node into parent position
— Parent becomes the “other” child (always okay in a BST!)
— Other subtrees move in only way BST allows (next slide)

AVL Property violated here

Intuition: 3 must become root
New parent height is now the old parent’s height before insert

Fall 2015 CSE373: Data Structures & Algorithms

Sometimes two wrongs make a right

» First idea violated the BST property
 Second idea didn’t fix balance

« But if we do both single rotations, starting with the second, it
works! (And not just for this example.)

 Double rotation:
1. Rotate problematic child and grandchild
2. Then rotate between self and new child

2 Intuition: 3 must become root

Fall 2015 CSE373: Data Structures & Algorithms

Insert, summarized

Insert as in a BST

Check back up path for imbalance, which will be 1 of 4 cases:

— Node’s left-left grandchild is too tall (left-left single rotation)

— Node’s left-right grandchild is too tall (left-right double rotation)

— Node’s right-left grandchild is too tall (right-left double rotation)

— Node’s right-right grandchild is too tall (right-right double rotation)

Only one case occurs because tree was balanced before insert

After the appropriate single or double rotation, the smallest-unbalanced
subtree has the same height as before the insertion

— So all ancestors are now balanced

Fall 2015 CSE373: Data Structures & Algorithms

Now efficiency

* Worst-case complexity of £ind: O(log n)
— Tree is balanced

« Worst-case complexity of insert: O(log n)
— Tree starts balanced
— A rotation is O(1) and there’s an O(1og n) path to root
— (Same complexity even without one-rotation-is-enough fact)

— Tree ends balanced

« Worst-case complexity of buildTree: O(n 1log n)

Takes some more rotation action to handle delete...

Fall 2015 CSE373: Data Structures & Algorithms

Pros and Cons of AVL Trees

Arguments for AVL trees:

1. All operations logarithmic worst-case because trees are always
balanced

2. Height balancing adds no more than a constant factor to the speed
of insert and delete

Arguments against AVL trees:

Difficult to program & debug [but done once in a library!]

More space for height field

Asymptotically faster but rebalancing takes a little time

Most large searches are done in database-like systems on disk and
use other structures (e.g., B-trees, a data structure in the text)

If amortized (later, | promise) logarithmic time is enough, use splay
trees (also in text)

o=

o

Fall 2015 CSE373: Data Structures & Algorithms

>

CSE373: Data Structures & Algorithms
Lecture 6: Hash Tables

Kevin Quinn
Fall 2015

Motivating Hash Tables

For a dictionary with n key, value pairs

insert find delete
* Unsorted linked-list O(1) O(n) O(n)
« Unsorted array O(1) O(n) O(n)
« Sorted linked list O(n) O(n) O(n)
« Sorted array O(n) O(logn) O(n)
« Balanced tree O(logn) O(logn) O(logn)
« Magic array O(1) O(1) O(1)

Sufficient “magic”:

— Use key to compute array index for an item in O(1) time [doable]

— Have a different index for every item [magic]

Fall 2015 CSE373: Data Structures & Algorithms

Motivating Hash Tables

« Let’s say you are tasked with counting the frequency of integers

in a text file. You are guaranteed that only the integers 0 through
100 will occur:

For example: 5,7,8,9,9,5,0,0,1,12
Result:0>2 12>1 5->2 7->1 8->1 9->2

What structure is appropriate?
Tree?
List?

o 1 2 3 4 5 6 7 8 9

Fall 2015 CSE373: Data Structures & Algorithms 9

Hash Tables

« Aim for constant-time (i.e., O(1)) £ind, insert, and delete
— “On average” under some often-reasonable assumptions

* A hash table is an array of some fixed size

 Basic idea:

hash function:
index = h(key)

hash table
0

>

key space (e.g., integers, strings)

TableSize —1

Fall 2015 CSE373: Data Structures & Algorithms 10

Hash Tables vs. Balanced Trees

* |n terms of a Dictionary ADT for just insert, £ind, delete, hash
tables and balanced trees are just different data structures

— Hash tables O(1) on average (assuming we follow good practices)
— Balanced trees O(1og n) worst-case

« Constant-time is better, right?
— Yes, but you need “hashing to behave” (must avoid collisions)

— Yes, but £indMin, findMax, predecessor, and successor
go from O(1log n) to O(n), printSorted from O(n) to O(n 1log n)

» Why your textbook considers this to be a different ADT

Fall 2015 CSE373: Data Structures & Algorithms 11

Hash Tables

 There are m possible keys (m typically large, even infinite)
 We expect our table to have only n items
* nis much less than m (often written n << m)

Many dictionaries have this property

Fall 2015

Compiler: All possible identifiers allowed by the language vs.

those used in some file of one program

Database: All possible student names vs. students enrolled

Al: All possible chess-board configurations vs. those
considered by the current player

CSE373: Data Structures & Algorithms

12

Hash functions

An ideal hash function:

» Fast to compute

 “Rarely h.ashes t.wo _used keys to the §ame |n.dex hash table
— Often impossible in theory but easy in practice
— Will handle collisions in next lecture

0

hash function:
index = h(key)
>

key space (e.g., integers, strings) TableSize —1

Fall 2015 CSE373: Data Structures & Algorithms 13

Who hashes what?

« Hash tables can be generic
— To store elements of type E, we just need E to be:
1. . order any two E (as with all dictionaries)
2. Hashable: convert any E to an int

 When hash tables are a reusabile library, the division of
responsibility generally breaks down into two roles:

client hash table library

E Immmw) ipnt Emmmmw) table-index |

collision? collision

resolution

 We will learn both roles, but most programmers “in the real world”
spend more time as clients while understanding the library

Fall 2015 CSE373: Data Structures & Algorithms 14

More on roles

Some ambiguity in terminology on which parts are “hashing”
client hash table library

collision? collision

F) int Emmmmw) table-index |

“hashing”? "hashing™?

resolution

Two roles must both contribute to minimizing collisions (heuristically)
 Client should aim for different ints for expected items
— Avoid “wasting” any part of E or the 32 bits of the int
« Library should aim for putting “similar” ints in different indices
— Conversion to index is almost always “mod table-size”
— Using prime numbers for table-size is common

Fall 2015 CSE373: Data Structures & Algorithms 15

What to hash?

We will focus on the two most common things to hash: ints and sfrings

— For objects with several fields, usually best to have most of the
“identifying fields” contribute to the hash to avoid collisions

— Example:

class Person {
String first; String middle; String last;

Date birthdate;
}

— An inherent trade-off: hashing-time vs. collision-avoidance
« Badidea(?): Use only first name
 Good idea(?): Use only middle initial
« Admittedly, what-to-hash-with is often unprincipled ®

Fall 2015 CSE373: Data Structures & Algorithms 16

Hashing integers

key space = integers

Simple hash function:

— Client: g(x) = x

— Library: £(x) = g(x) % TableSize
— Fairly fast and natural

Example:

— TableSize =10

— Insert 7, 18, 41, 34, 10

— Insert 447

— (As usual, only looking at keys, not values)

Fall 2015 CSE373: Data Structures & Algorithms

o @ 1 SN N A W= O

10

41

34

17

Collision-avoidance

« With “x % TableSize” the number of collisions depends on
— the ints inserted (obviously)
— TableSize

« Larger table-size tends to help, but not always
— Example: 70, 17, 14, 9, 10
— What's a table size that would work well? Poorly?
TableSize = 9 and TableSize = 60

« Technique: Pick table size to be prime. Why?
— Real-life data tends to have a pattern
— “Multiples of 61" are probably less likely than “multiples of 60"

— Next lecture shows one collision-handling strategy does

provably well with prime table size s

Okay, back to the client

* |f keys aren’t ints, the client must convert to an int

— Trade-off: speed versus distinct keys hashing to distinct ints

* Very important example: Strings
— Key space K =s45,S,...S 1
« (where s, are chars: s, € [0,52] or s, € [0,256] or s, € [0,279])
— Some choices: Which avoid collisions best?

1. h(K)= SC ,",/p'[abljSize

Si
2j=

k-1 .
E s -37"
3. h(K)= | & % TableSize

% TableSize

19

Specializing hash functions

How might you hash differently if all your strings were web
addresses (URLs)?

Fall 2015 CSE373: Data Structures & Algorithms

20

Combining hash functions

A few rules of thumb / tricks:
1. Use all 32 bits (careful, that includes negative numbers)

2. Use different overlapping bits for different parts of the hash
— This is why a factor of 37' works better than 256!
— Example: “abcde” and “ebcda”

3. When smashing two hashes into one hash, use bitwise-xor
— bitwise-and produces too many 0 bits
— bitwise-or produces too many 1 bits

4. Rely on expertise of others; consult books and other resources

5. If keys are known ahead of time, choose a perfect hash

Fall 2015 CSE373: Data Structures & Algorithms 21

Combining Hashes

h1 =10110011: (unicode for the int “3”)
h2 = 01100101: (unicode for the char “e”)

h1 AND h2

10110011
01100101

00100001

Fall 2015

h1 OR h2
10110011
01100101
11110111

CSE373: Data Structures & Algorithms

h1 XOR h2
10110011
01100101

11010110

22

One expert suggestion o

Effective Java

Second Fdition

int result = 17;
foreach field £

int fieldHashcode =
boolean: (£ ? 1: 0)

byte, char, short, int: (int) £
long: (int) (£ & (£ >>> 32))
float: Float.floatToIntBits (f)
double: Double.doubleTolLongBits (f), then above
Object: object.hashCode()
result = 31 * result + fieldHashcode

Fall 2015 CSE373: Data Structures & Algorithms 23

Hashing and comparing

Need to emphasize a critical detail:
— We initially hash key E to get a table index
— To check an item is what we are looking for, compareTo E
« Does it have an equal key?

So a hash table needs a hash function and a comparator

— The Java library uses a more object-oriented approach:
each object has methods equals and hashCode

class Object {

boolean equals (Object o) ({..}
int hashCode () {..}

Fall 2015 CSE373: Data Structures & Algorithms

24

Equal Objects Must Hash the Same

The Java library make a crucial assumption clients must satisfy
— And all hash tables make analogous assumptions

* Object-oriented way of saying it:
If a.equals (b), then a.hashCode () ==b.hashCode ()

 Why is this essential?
* Why is this up to the client?

» So always override hashCode correctly if you override equals
— Many libraries use hash tables on your objects

Fall 2015 CSE373: Data Structures & Algorithms 25

By the way: comparison has rules too

We have not emphasized important “rules” about comparison for:
— Dictionaries
— Sorting (future major topic)

Comparison must impose a consistent, total ordering:

For all a, b, and ¢,
(reflexivity):. a.compareTo(a) ==

(transitivity): Ifa.compareTo(b) < 0 and b.compareTo (c) <0,
then a.compareTo(c) < O

(symmetry): Ifa.compareTo(b) < 0, thenb.compareTo(a) > 0

If a.compareTo (b)== 0, then b.compareTo (a)==

This is surprisingly awkward because of subclassing... o

Example

class MyDate {
int month;
int year;
int day;

boolean equals (Object otherObject) ({
if (this==otherObject) return true; // common?
if (otherObject==null) return false;
if (getClass () '=other.getClass()) return false;
return month = otherObject.month
&& year = otherObject.year
&& day = otherObject.day;
}

// wrong: must also override hashCode!

}

Fall 2015 CSE373: Data Structures & Algorithms 27

Tougher example

« Suppose you had a Fraction class where equals returned
true for 1/2 and 3/6, etc.

 Then must override hashCode and cannot hash just based on
the numerator and denominator

— Need 1/2 and 3/6 to hash to the same int

* If you write software for a living, you are less likely to implement
hash tables from scratch than you are likely to encounter this
Issue

Fall 2015 CSE373: Data Structures & Algorithms 28

Conclusions and notes on hashing

The hash table is one of the most important data structures
— Supports only £ind, insert, and delete efficiently
— Have to search entire table for other operations

Important to use a good hash function

Important to keep hash table at a good size

Side-comment: hash functions have uses beyond hash tables
— Examples: Cryptography, check-sums

Big remaining topic: Handling collisions

Fall 2015 CSE373: Data Structures & Algorithms 29

