
Case #1: Example

Fall 2015 CSE373: Data Structures & Algorithms

Insert(6)
Insert(3)
Insert(1)

Third insertion violates balance property

•  happens to be at the root

What is the only way to fix this?

6

3

1

2

1

0

6

3

1

0

6
0

Fix: Apply “Single Rotation”
•  Single rotation: The basic operation we’ll use to rebalance

–  Move child of unbalanced node into parent position
–  Parent becomes the “other” child (always okay in a BST!)
–  Other subtrees move in only way BST allows (next slide)

Fall 2015 CSE373: Data Structures & Algorithms

3

1 6
0 0

1
6

3

0

1

2

AVL Property violated here

Intuition: 3 must become root
New parent height is now the old parent’s height before insert

1

Sometimes two wrongs make a right
•  First idea violated the BST property
•  Second idea didn’t fix balance
•  But if we do both single rotations, starting with the second, it

works! (And not just for this example.)
•  Double rotation:

1.  Rotate problematic child and grandchild
2.  Then rotate between self and new child

Fall 2015 CSE373: Data Structures & Algorithms

3

6

1

0

1

 2

6

3

1

0

 1

 2

0 0

1

1

3

6

Intuition: 3 must become root

Insert, summarized

•  Insert as in a BST

•  Check back up path for imbalance, which will be 1 of 4 cases:
–  Node’s left-left grandchild is too tall (left-left single rotation)
–  Node’s left-right grandchild is too tall (left-right double rotation)
–  Node’s right-left grandchild is too tall (right-left double rotation)
–  Node’s right-right grandchild is too tall (right-right double rotation)

•  Only one case occurs because tree was balanced before insert

•  After the appropriate single or double rotation, the smallest-unbalanced
subtree has the same height as before the insertion
–  So all ancestors are now balanced

Fall 2015 CSE373: Data Structures & Algorithms

Now efficiency

•  Worst-case complexity of find: O(log n)

–  Tree is balanced

•  Worst-case complexity of insert: O(log n)
–  Tree starts balanced
–  A rotation is O(1) and there’s an O(log n) path to root
–  (Same complexity even without one-rotation-is-enough fact)
–  Tree ends balanced

•  Worst-case complexity of buildTree: O(n log n)

Takes some more rotation action to handle delete…

Fall 2015 CSE373: Data Structures & Algorithms

Pros and Cons of AVL Trees

Fall 2015 CSE373: Data Structures & Algorithms

Arguments for AVL trees:

1.  All operations logarithmic worst-case because trees are always

balanced
2.  Height balancing adds no more than a constant factor to the speed

of insert and delete

Arguments against AVL trees:

1.  Difficult to program & debug [but done once in a library!]
2.  More space for height field
3.  Asymptotically faster but rebalancing takes a little time
4.  Most large searches are done in database-like systems on disk and

use other structures (e.g., B-trees, a data structure in the text)
5.  If amortized (later, I promise) logarithmic time is enough, use splay

trees (also in text)

CSE373: Data Structures & Algorithms

Lecture 6: Hash Tables

Kevin Quinn
Fall 2015

Motivating Hash Tables
For a dictionary with n key, value pairs

 insert find delete
•  Unsorted linked-list O(1) O(n) O(n)
•  Unsorted array O(1) O(n) O(n)
•  Sorted linked list O(n) O(n) O(n)
•  Sorted array O(n) O(log n) O(n)
•  Balanced tree O(log n) O(log n) O(log n)
•  Magic array O(1) O(1) O(1)

Sufficient “magic”:
–  Use key to compute array index for an item in O(1) time [doable]
–  Have a different index for every item [magic]

Fall 2015 8 CSE373: Data Structures & Algorithms

Motivating Hash Tables

•  Let’s say you are tasked with counting the frequency of integers
in a text file. You are guaranteed that only the integers 0 through
100 will occur:

For example: 5, 7, 8, 9, 9, 5, 0, 0, 1, 12

 Result: 0 à 2 1 à 1 5 à 2 7 à 1 8 à 1 9 à 2

 What structure is appropriate?

 Tree?
 List?
 Array?

Fall 2015 9 CSE373: Data Structures & Algorithms

2 1 2 1 1 2
 0 1 2 3 4 5 6 7 8 9

Hash Tables

•  Aim for constant-time (i.e., O(1)) find, insert, and delete
–  “On average” under some often-reasonable assumptions

•  A hash table is an array of some fixed size

•  Basic idea:

Fall 2015 10 CSE373: Data Structures & Algorithms

0

…

TableSize –1

hash function:
index = h(key)

hash table

key space (e.g., integers, strings)

Hash Tables vs. Balanced Trees

•  In terms of a Dictionary ADT for just insert, find, delete, hash
tables and balanced trees are just different data structures
–  Hash tables O(1) on average (assuming we follow good practices)
–  Balanced trees O(log n) worst-case

•  Constant-time is better, right?
–  Yes, but you need “hashing to behave” (must avoid collisions)
–  Yes, but findMin, findMax, predecessor, and successor

go from O(log n) to O(n), printSorted from O(n) to O(n log n)
•  Why your textbook considers this to be a different ADT

Fall 2015 11 CSE373: Data Structures & Algorithms

Hash Tables

•  There are m possible keys (m typically large, even infinite)
•  We expect our table to have only n items
•  n is much less than m (often written n << m)

Many dictionaries have this property

–  Compiler: All possible identifiers allowed by the language vs.
those used in some file of one program

–  Database: All possible student names vs. students enrolled

–  AI: All possible chess-board configurations vs. those
considered by the current player

–  …

Fall 2015 12 CSE373: Data Structures & Algorithms

Hash functions

An ideal hash function:
•  Fast to compute
•  “Rarely” hashes two “used” keys to the same index

–  Often impossible in theory but easy in practice
–  Will handle collisions in next lecture

Fall 2015 13 CSE373: Data Structures & Algorithms

0

…

TableSize –1

hash function:
index = h(key)

hash table

key space (e.g., integers, strings)

Who hashes what?
•  Hash tables can be generic

–  To store elements of type E, we just need E to be:
1.  Comparable: order any two E (as with all dictionaries)
2.  Hashable: convert any E to an int

•  When hash tables are a reusable library, the division of
responsibility generally breaks down into two roles:

Fall 2015 14 CSE373: Data Structures & Algorithms

•  We will learn both roles, but most programmers “in the real world”
spend more time as clients while understanding the library

E int table-index
collision? collision

resolution

client hash table library

More on roles

Fall 2015 15 CSE373: Data Structures & Algorithms

Two roles must both contribute to minimizing collisions (heuristically)
•  Client should aim for different ints for expected items

–  Avoid “wasting” any part of E or the 32 bits of the int
•  Library should aim for putting “similar” ints in different indices

–  Conversion to index is almost always “mod table-size”
–  Using prime numbers for table-size is common

E int table-index
collision? collision

resolution

client hash table library
Some ambiguity in terminology on which parts are “hashing”

“hashing”? “hashing”?

What to hash?
We will focus on the two most common things to hash: ints and strings

–  For objects with several fields, usually best to have most of the
“identifying fields” contribute to the hash to avoid collisions

–  Example:
 class Person {
 String first; String middle; String last;

 Date birthdate;
 }

–  An inherent trade-off: hashing-time vs. collision-avoidance
•  Bad idea(?): Use only first name
•  Good idea(?): Use only middle initial
•  Admittedly, what-to-hash-with is often unprincipled L

Fall 2015 16 CSE373: Data Structures & Algorithms

Hashing integers

Fall 2015 17 CSE373: Data Structures & Algorithms

0
1
2
3
4
5
6
7
8
9

•  key space = integers

•  Simple hash function:
–  Client: g(x) = x
–  Library: f(x) = g(x) % TableSize
–  Fairly fast and natural

•  Example:
–  TableSize = 10
–  Insert 7, 18, 41, 34, 10
–  Insert 44?
–  (As usual, only looking at keys, not values)

10

41

34

7
18

Collision-avoidance

•  With “x % TableSize” the number of collisions depends on
–  the ints inserted (obviously)
–  TableSize

•  Larger table-size tends to help, but not always
–  Example: 70, 17, 14, 9, 10
–  What’s a table size that would work well? Poorly?
 TableSize = 9 and TableSize = 60

•  Technique: Pick table size to be prime. Why?
–  Real-life data tends to have a pattern
–  “Multiples of 61” are probably less likely than “multiples of 60”
–  Next lecture shows one collision-handling strategy does

provably well with prime table size

18

Okay, back to the client
•  If keys aren’t ints, the client must convert to an int

–  Why can’t the library do this for us?
–  Trade-off: speed versus distinct keys hashing to distinct ints

•  Very important example: Strings
–  Key space K = s0s1s2…sm-1

•  (where si are chars: si ∈ [0,52] or si ∈ [0,256] or si ∈ [0,216])
–  Some choices: Which avoid collisions best?

1.  h(K) = s0 % TableSize

2.  h(K) = % TableSize

3.  h(K) = % TableSize
 19

1

0

m

i
i
s

−

=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑

⎟
⎠

⎞
⎜
⎝

⎛
⋅∑

−

=

1

0
37

k

i

i
is

Specializing hash functions

How might you hash differently if all your strings were web

addresses (URLs)?

Fall 2015 20 CSE373: Data Structures & Algorithms

Combining hash functions

A few rules of thumb / tricks:

1.  Use all 32 bits (careful, that includes negative numbers)

2.  Use different overlapping bits for different parts of the hash
–  This is why a factor of 37i works better than 256i

–  Example: “abcde” and “ebcda”

3.  When smashing two hashes into one hash, use bitwise-xor
–  bitwise-and produces too many 0 bits
–  bitwise-or produces too many 1 bits

4.  Rely on expertise of others; consult books and other resources

5.  If keys are known ahead of time, choose a perfect hash

Fall 2015 21 CSE373: Data Structures & Algorithms

Combining Hashes

Fall 2015 22 CSE373: Data Structures & Algorithms

10110011
01100101
00100001

10110011
01100101
11110111

10110011
01100101
11010110

h1 = 10110011: (unicode for the int “3”)
h2 = 01100101: (unicode for the char “e”)

h1 AND h2 h1 OR h2 h1 XOR h2

One expert suggestion

int result = 17;
foreach field f

 int fieldHashcode =
 boolean: (f ? 1: 0)
 byte, char, short, int: (int) f
 long: (int) (f ^ (f >>> 32))
 float: Float.floatToIntBits(f)
 double: Double.doubleToLongBits(f), then above
 Object: object.hashCode()

 result = 31 * result + fieldHashcode

Fall 2015 CSE373: Data Structures & Algorithms 23

Hashing and comparing

•  Need to emphasize a critical detail:
–  We initially hash key E to get a table index
–  To check an item is what we are looking for, compareTo E

•  Does it have an equal key?

•  So a hash table needs a hash function and a comparator
–  The Java library uses a more object-oriented approach:

each object has methods equals and hashCode

Fall 2015 24 CSE373: Data Structures & Algorithms

class Object {
 boolean equals(Object o) {…}
 int hashCode() {…}
 …
}

Equal Objects Must Hash the Same

•  The Java library make a crucial assumption clients must satisfy
–  And all hash tables make analogous assumptions

•  Object-oriented way of saying it:
 If a.equals(b), then a.hashCode()==b.hashCode()

•  Why is this essential?

•  Why is this up to the client?

•  So always override hashCode correctly if you override equals
–  Many libraries use hash tables on your objects

Fall 2015 25 CSE373: Data Structures & Algorithms

By the way: comparison has rules too
We have not emphasized important “rules” about comparison for:

–  Dictionaries
–  Sorting (future major topic)

Comparison must impose a consistent, total ordering:

For all a, b, and c,
(reflexivity): a.compareTo(a) == 0

(transitivity): If a.compareTo(b) < 0 and b.compareTo(c)<0,

 then a.compareTo(c) < 0

(symmetry): If a.compareTo(b) < 0, then b.compareTo(a) > 0
 If a.compareTo(b)== 0, then b.compareTo(a)==0

This is surprisingly awkward because of subclassing… 26

Example

Fall 2015 27 CSE373: Data Structures & Algorithms

class MyDate {
 int month;
 int year;
 int day;

 boolean equals(Object otherObject) {
 if(this==otherObject) return true; // common?
 if(otherObject==null) return false;
 if(getClass()!=other.getClass()) return false;
 return month = otherObject.month

 && year = otherObject.year
 && day = otherObject.day;
 }
 // wrong: must also override hashCode!

}

Tougher example

•  Suppose you had a Fraction class where equals returned
true for 1/2 and 3/6, etc.

•  Then must override hashCode and cannot hash just based on
the numerator and denominator
–  Need 1/2 and 3/6 to hash to the same int

•  If you write software for a living, you are less likely to implement
hash tables from scratch than you are likely to encounter this
issue

Fall 2015 28 CSE373: Data Structures & Algorithms

Conclusions and notes on hashing

•  The hash table is one of the most important data structures
–  Supports only find, insert, and delete efficiently
–  Have to search entire table for other operations

•  Important to use a good hash function

•  Important to keep hash table at a good size

•  Side-comment: hash functions have uses beyond hash tables
–  Examples: Cryptography, check-sums

•  Big remaining topic: Handling collisions

Fall 2015 29 CSE373: Data Structures & Algorithms

