
Case #1: Example 
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Insert(6) 
Insert(3) 
Insert(1) 
 
 
Third insertion violates balance property 

•  happens to be at the root 

What is the only way to fix this?  
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Fix: Apply “Single Rotation” 
•  Single rotation: The basic operation we’ll use to rebalance 

–  Move child of unbalanced node into parent position 
–  Parent becomes the “other” child (always okay in a BST!) 
–  Other subtrees move in only way BST allows (next slide) 
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AVL Property violated here 

Intuition: 3 must become root 
New parent height is now the old parent’s height before insert 
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Sometimes two wrongs make a right 
•  First idea violated the BST property 
•  Second idea didn’t fix balance 
•  But if we do both single rotations, starting with the second, it 

works!  (And not just for this example.) 
•  Double rotation:  

1.  Rotate problematic child and grandchild 
2.  Then rotate between self and new child 
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Insert, summarized 

•  Insert as in a BST 

•  Check back up path for imbalance, which will be 1 of 4 cases: 
–  Node’s left-left grandchild is too tall (left-left single rotation) 
–  Node’s left-right grandchild is too tall (left-right double rotation) 
–  Node’s right-left grandchild is too tall (right-left double rotation) 
–  Node’s right-right grandchild is too tall (right-right double rotation) 

•  Only one case occurs because tree was balanced before insert 

•  After the appropriate single or double rotation, the smallest-unbalanced 
subtree has the same height as before the insertion 
–  So all ancestors are now balanced 
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Now efficiency 
 
•  Worst-case complexity of find: O(log n) 

–  Tree is balanced 
 

•  Worst-case complexity of insert: O(log n) 
–  Tree starts balanced 
–  A rotation is O(1) and there’s an O(log n) path to root 
–  (Same complexity even without one-rotation-is-enough fact) 
–  Tree ends balanced 

•  Worst-case complexity of buildTree: O(n log n) 
 
Takes some more rotation action to handle delete… 
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Pros and Cons of AVL Trees 
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Arguments for AVL trees: 
 
1.  All operations logarithmic worst-case because trees are always  

balanced 
2.  Height balancing adds no more than a constant factor to the speed 

of insert and delete 
 
Arguments against AVL trees: 
 
1.  Difficult to program & debug [but done once in a library!] 
2.  More space for height field 
3.  Asymptotically faster but rebalancing takes a little time 
4.  Most large searches are done in database-like systems on disk and 

use other structures (e.g., B-trees, a data structure in the text) 
5.  If amortized (later, I promise) logarithmic time is enough, use splay 

trees (also in text) 
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Motivating Hash Tables 
For a dictionary with n  key, value pairs 
 

      insert   find    delete 
•  Unsorted linked-list           O(1)          O(n)            O(n) 
•  Unsorted array                  O(1)          O(n)            O(n) 
•  Sorted linked list               O(n)          O(n)            O(n) 
•  Sorted array                      O(n)          O(log n)     O(n) 
•  Balanced tree         O(log n)   O(log n)     O(log n) 
•  Magic array                      O(1)           O(1)            O(1) 

Sufficient “magic”:  
–  Use key to compute array index for an item in O(1) time [doable] 
–  Have a different index for every item [magic] 
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Motivating Hash Tables 

•  Let’s say you are tasked with counting the frequency of integers 
in a text file. You are guaranteed that only the integers 0 through 
100 will occur: 
 
For example: 5, 7, 8, 9, 9, 5, 0, 0, 1, 12 

     Result: 0 à 2     1 à 1     5 à 2     7 à 1    8 à 1     9 à 2 
 
     What structure is appropriate? 

 Tree? 
 List? 
 Array?  
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2      1                          2           1     1     2 
 0      1       2     3      4     5     6     7      8     9     



Hash Tables 

•  Aim for constant-time (i.e., O(1)) find, insert, and delete 
–  “On average” under some often-reasonable assumptions 

•  A hash table is an array of some fixed size 

•  Basic idea: 
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… 

TableSize –1  

hash function: 
index = h(key) 

hash table 

key space (e.g., integers, strings) 



Hash Tables vs. Balanced Trees 

•  In terms of a Dictionary ADT for just insert, find, delete, hash 
tables and balanced trees are just different data structures 
–  Hash tables O(1) on average (assuming we follow good practices) 
–  Balanced trees O(log n) worst-case 

•  Constant-time is better, right? 
–  Yes, but you need “hashing to behave” (must avoid collisions) 
–  Yes, but findMin, findMax, predecessor, and successor  

go from O(log n) to O(n), printSorted from O(n) to O(n log n)  
•  Why your textbook considers this to be a different ADT 
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Hash Tables 

•  There are m possible keys (m typically large, even infinite)  
•  We expect our table to have only n items  
•  n is much less than m (often written n << m) 

Many dictionaries have this property 
 

–  Compiler: All possible identifiers allowed by the language vs. 
those used in some file of one program 

–  Database: All possible student names vs. students enrolled 

–  AI: All possible chess-board configurations vs. those 
considered by the current player 

–  … 
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Hash functions 

An ideal hash function: 
•  Fast to compute 
•  “Rarely” hashes two “used” keys to the same index 

–  Often impossible in theory but easy in practice 
–  Will handle collisions in next lecture 
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Who hashes what? 
•  Hash tables can be generic 

–  To store elements of type E, we just need E to be: 
1.  Comparable: order any two E (as with all dictionaries) 
2.  Hashable: convert any E to an int 

•  When hash tables are a reusable library, the division of 
responsibility generally breaks down into two roles: 

Fall 2015 14 CSE373: Data Structures & Algorithms 

•  We will learn both roles, but most programmers “in the real world” 
spend more time as clients while understanding the library 

E int table-index 
collision? collision 

resolution 

client hash table library 



More on roles 
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Two roles must both contribute to minimizing collisions (heuristically) 
•  Client should aim for different ints for expected items 

–  Avoid “wasting” any part of E or the 32 bits of the int 
•  Library should aim for putting “similar” ints in different indices 

–  Conversion to index is almost always “mod table-size” 
–  Using prime numbers for table-size is common 

E int table-index 
collision? collision 

resolution 

client hash table library 
Some ambiguity in terminology on which parts are “hashing” 

“hashing”? “hashing”? 



What to hash? 
We will focus on the two most common things to hash: ints and strings 

–  For objects with several fields, usually best to have most of the 
“identifying fields” contribute to the hash to avoid collisions 

–  Example:  
 class Person {  
   String first; String middle; String last;      

      Date birthdate;  
   } 
 

–  An inherent trade-off: hashing-time vs. collision-avoidance 
•  Bad idea(?):  Use only first name 
•  Good idea(?):  Use only middle initial 
•  Admittedly, what-to-hash-with is often unprincipled L 
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Hashing integers 
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•  key space = integers 

•  Simple hash function:  
–  Client: g(x) = x 
–  Library: f(x) = g(x) % TableSize 
–  Fairly fast and natural 
 

•  Example: 
–  TableSize = 10 
–  Insert 7, 18, 41, 34, 10 
–  Insert 44? 
–  (As usual, only looking at keys, not values) 

10 

41  

34 

7 
18 



Collision-avoidance 

•  With “x % TableSize” the number of collisions depends on 
–  the ints inserted (obviously) 
–  TableSize 

•  Larger table-size tends to help, but not always 
–  Example: 70, 17, 14, 9, 10  
–  What’s a table size that would work well? Poorly? 
    TableSize = 9 and TableSize = 60 
 

•  Technique: Pick table size to be prime. Why? 
–  Real-life data tends to have a pattern 
–  “Multiples of 61” are probably less likely than “multiples of 60” 
–  Next lecture shows one collision-handling strategy does 

provably well with prime table size 
 

18 



Okay, back to the client 
•  If keys aren’t ints, the client must convert to an int 

–  Why can’t the library do this for us? 
–  Trade-off: speed versus distinct keys hashing to distinct ints 

•  Very important example: Strings 
–  Key space K  = s0s1s2…sm-1  

•  (where si are chars:  si ∈ [0,52] or si ∈ [0,256] or si ∈ [0,216]) 
–  Some choices: Which avoid collisions best? 

1.  h(K) = s0 % TableSize 

2.  h(K) =                    % TableSize 

3.  h(K) =                              % TableSize 
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Specializing hash functions 

 
 
How might you hash differently if all your strings were web 

addresses (URLs)? 
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Combining hash functions 

A few rules of thumb / tricks: 
 

1.  Use all 32 bits (careful, that includes negative numbers) 

2.  Use different overlapping bits for different parts of the hash  
–  This is why  a factor of 37i works better than 256i 

–  Example: “abcde” and “ebcda” 

3.  When smashing two hashes into one hash, use bitwise-xor 
–  bitwise-and produces too many 0 bits 
–  bitwise-or produces too many 1 bits 

4.  Rely on expertise of others; consult books and other resources 

5.  If keys are known ahead of time, choose a perfect hash 
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Combining Hashes 
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10110011 
01100101 
00100001 

10110011 
01100101 
11110111 

10110011 
01100101 
11010110 

h1 = 10110011: (unicode for the int “3”) 
h2 = 01100101: (unicode for the char “e”) 

h1 AND h2 h1 OR h2  h1 XOR h2  



One expert suggestion 

int result = 17; 
foreach field f 

 int fieldHashcode = 
  boolean: (f ? 1: 0) 
  byte, char, short, int: (int) f 
  long: (int) (f ^ (f >>> 32)) 
  float: Float.floatToIntBits(f) 
  double: Double.doubleToLongBits(f), then above 
  Object: object.hashCode( ) 

  result = 31 * result + fieldHashcode 
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Hashing and comparing 

•  Need to emphasize a critical detail: 
–  We initially hash key E to get a table index 
–  To check an item is what we are looking for, compareTo E 

•  Does it have an equal key? 

•  So a hash table needs a hash function and a comparator 
–  The Java library uses a more object-oriented approach:     

each object has methods equals and hashCode 

Fall 2015 24 CSE373: Data Structures & Algorithms 

class Object {  
  boolean equals(Object o) {…} 
  int hashCode() {…} 
  … 
} 



Equal Objects Must Hash the Same 

•  The Java library make a crucial assumption clients must satisfy 
–  And all hash tables make analogous assumptions 

•  Object-oriented way of saying it: 
 If a.equals(b), then a.hashCode()==b.hashCode() 

•  Why is this essential? 

•  Why is this up to the client? 

•  So always override hashCode correctly if you override equals 
–  Many libraries use hash tables on your objects 
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By the way: comparison has rules too 
We have not emphasized important “rules” about comparison for: 

–  Dictionaries 
–  Sorting (future major topic) 

Comparison must impose a consistent, total ordering: 
 

For all a, b, and c, 
(reflexivity):    a.compareTo(a) == 0 

 
(transitivity): If a.compareTo(b) < 0 and b.compareTo(c)<0,                              

           then a.compareTo(c) < 0 
 

(symmetry):  If a.compareTo(b) < 0, then b.compareTo(a) > 0 
                 If a.compareTo(b)== 0, then b.compareTo(a)==0 
 

This is surprisingly awkward because of subclassing… 26 



Example 
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class MyDate { 
  int month; 
  int year; 
  int day; 
 
  boolean equals(Object otherObject) { 
     if(this==otherObject) return true; // common? 
     if(otherObject==null) return false; 
     if(getClass()!=other.getClass()) return false; 
    return month = otherObject.month 

            && year = otherObject.year 
            && day = otherObject.day; 
  } 
 // wrong: must also override hashCode! 

} 



Tougher example 

•  Suppose you had a Fraction class where equals returned 
true for 1/2 and 3/6, etc. 

•  Then must override hashCode and cannot hash just based on 
the numerator and denominator 
–  Need 1/2 and 3/6 to hash to the same int 

•  If you write software for a living, you are less likely to implement 
hash tables from scratch than you are likely to encounter this 
issue 
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Conclusions and notes on hashing 

•  The hash table is one of the most important data structures 
–  Supports only find, insert, and delete efficiently 
–  Have to search entire table for other operations 

•  Important to use a good hash function 

•  Important to keep hash table at a good size 

•  Side-comment: hash functions have uses beyond hash tables 
–  Examples: Cryptography, check-sums 

•  Big remaining topic: Handling collisions 
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