CSE373: Data Structures & Algorithms
Lecture 26: Memory Hierarchy and Locality
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Why do we need to know about the
memory Hierarchy?

* One of the assumptions that Big-Oh makes is
that all operations take the same amount of
time

— This is not quite correct.
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8;
2 * Xx;

= new int[1000]
= a[0] + a[l] + a[999];

ListNode top = new ListNode(7);
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Definitions

e Cycle (for our purposes): the time is takes to
execute a single simple instruction (for
example, add 2 registers together)

* Memory Latency: The time it takes to access
memory
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Moral of the story

* [tis much faster to do:
— 5 million arithmetic ops than 1 disk access
— 25000 L2 cache accesses than 1 disk access
— 400 main memory accesses then 1 disk access

 Why though?
— Physical realities (speed of light, closeness to CPU)
— Cost (price per byte of different technologies)

— Disks get much bigger but not much faster

e Spinning at 7200 RPM account for much of the slowness, spinning
hard disks are unlikely to get much faster.

* What about SSDs?

— Speedup at higher levels (i.e. a faster processor) makes
lower level accesses relatively slower. Yikes.



Microprocessor Transistor Counts 1971-2011 & Moore’s Law
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Processor-Memory Performance Gap

Relative Performance

1 0000

B CPU Frequency 2x Every 2 Years
B DRAM Speeds

1000

100

10
2x Every 6 Years

|

1980 1985 1990 1995 2000 2005

11/22/20173 3



What can we do to optimize?

 Hardware automatically moves data into caches
from main memory
— Replacing items already there
— Algorithms are much faster if data fits in the cache

* Disk accesses are abstracted away by the
operating system

* Code “just runs” but sometimes it’s worth
designed algorithms/data structures with
knowledge of the memory hierachy



Locality

 Temporal Locality (locality in time)

— |f an item (a location in memory) is referenced,
that same location will tend to be referenced
again soon

e Spatial Locality (locality in space)

— If an item is referenced, items whose addresses
are close by will tend to be referenced soon as
well




How does data move up the
hierarchy?

* Moving data up the hierarchy is slow because of

latency (distance to travel)

— Since we are making a trip anyway, might as well carpool!
* Get a block of data in the same time it takes to get a byte

— Send nearby memory
e Because its cheap and easy
e And spatial locality says it will be asked for soon!

* Once we move something to the cache, keep it
around for a while, no rush to get rid of it!
(Temporal Locality)



Cache Facts

e Each level is a sub-set of the level below

* Definitions
— Cache hit: address requested already in the cache
— Cache miss: address request NOT in the cache

— Block of page size: the number of contiguous bytes
moved from disk to memory

— Cache line size: the number of contiguous bytes moved
from memory to the cache
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Locality in Data Structure

* Which has the least potential for better spatial
locality, arrays or linked lists?



Where is the locality?

for (int@ = 1; i < 100; @F+) {

patial Locality on locations in array x
emporal Locality

— O




