CSE373: Data Structures & Algorithms
Lecture 26: Memory Hierarchy and Locality

Kevin Quinn, Fall 2015



Why do we need to know about the
memory Hierarchy?

* One of the assumptions that Big-Oh makes is
that all operations take the same amount of
time

— This is not quite correct.



int x =
int y =

int[] z
int val

Example

8;
2 * Xx;

= new int[1000]
= a[0] + a[l] + a[999];

ListNode top = new ListNode(7);

top.next

= new ListNode(24) ;

ListNode temp = top.next;

z[999]

top

val

next

val
next

3000
3001

5000
5001
7000
7001

16

address 5000

7

address 7000

24

null




Definitions

e Cycle (for our purposes): the time is takes to
execute a single simple instruction (for
example, add 2 registers together)

* Memory Latency: The time it takes to access
memory



Time to access:

~16-64+ CPU 1 ns per instruction
registers
SIRAN Cache
| : Cache
8KB - 4MB A
Main Memory

DRAM Main Memory
#1068 — 40-100 ns
— AV —

<~ M _ a few

many GB Disk ik milliseconds

B — (5-10 Million ns)

11/22/2013

5



Moral of the story

* [tis much faster to do:
— 5 million arithmetic ops than 1 disk access
— 25000 L2 cache accesses than 1 disk access
— 400 main memory accesses then 1 disk access

 Why though?
— Physical realities (speed of light, closeness to CPU)
— Cost (price per byte of different technologies)

— Disks get much bigger but not much faster

e Spinning at 7200 RPM account for much of the slowness, spinning
hard disks are unlikely to get much faster.

* What about SSDs?

— Speedup at higher levels (i.e. a faster processor) makes
lower level accesses relatively slower. Yikes.



Microprocessor Transistor Counts 1971-2011 & Moore’s Law

16-Coro SPAAC T2
$ix-Coro Core (7
2,600,000,000 - S Com Xeon 400, L 010 ore Keon Waskr-£X
Dual-Core Banium 20 - povﬁaasy
1,000,000,000 - ,0“”‘:':.\ ,.:\ i:ggx}mw Tuwia
W?m“mgﬂx‘/\wgﬁm‘mw
Barum 20 ’&. 20w
100,000,000 & A0 K8
/ oBawn o
.% :z»m
§ 1 o'ooo'wo N '/A?P:um "
Pentum 8
o
(&)
T
o
w
2 1,000,000
o
©
=
100,000
8085
10.000 i m\ Y]
a0, | ez
nose OMOS 6502
2,300 e terime
| 1} ] ] 1
1971 1980 1990 2000 2011
11/22/2013 Date of introduction

Frora Wikipedia



Processor-Memory Performance Gap

Relative Performance

1 0000

B CPU Frequency 2x Every 2 Years
B DRAM Speeds

1000

100

10
2x Every 6 Years

|

1980 1985 1990 1995 2000 2005

11/22/20173 3



What can we do to optimize?

 Hardware automatically moves data into caches
from main memory
— Replacing items already there
— Algorithms are much faster if data fits in the cache

* Disk accesses are abstracted away by the
operating system

* Code “just runs” but sometimes it’s worth
designed algorithms/data structures with
knowledge of the memory hierachy



Locality

 Temporal Locality (locality in time)

— |f an item (a location in memory) is referenced,
that same location will tend to be referenced
again soon

e Spatial Locality (locality in space)

— If an item is referenced, items whose addresses
are close by will tend to be referenced soon as
well




How does data move up the
hierarchy?

* Moving data up the hierarchy is slow because of

latency (distance to travel)

— Since we are making a trip anyway, might as well carpool!
* Get a block of data in the same time it takes to get a byte

— Send nearby memory
e Because its cheap and easy
e And spatial locality says it will be asked for soon!

* Once we move something to the cache, keep it
around for a while, no rush to get rid of it!
(Temporal Locality)



Cache Facts

e Each level is a sub-set of the level below

* Definitions
— Cache hit: address requested already in the cache
— Cache miss: address request NOT in the cache

— Block of page size: the number of contiguous bytes
moved from disk to memory

— Cache line size: the number of contiguous bytes moved
from memory to the cache



Examples

miss
hit
hit

miss
hit
hit

Temporal
Locality

Spatial
Locality



Locality in Data Structure

* Which has the least potential for better spatial
locality, arrays or linked lists?



Where is the locality?

for (int@ = 1; i < 100; @F+) {

patial Locality on locations in array x
emporal Locality

— O




