CSE373: Data Structures & Algorithms
Lecture 25: Problem Solving

Fall 2015, Kevin Quinn

CSE373: Data Structures and algorithms 1

Tools at our Disposal

Over the past 8 weeks we have developed a broad knowledge of data
structures and algorithms (I hope):

— Stacks and Queues
* Various implementation (Stack/List)

— Trees
* Balanced (AVL), BST
— Graphs
* Directed/Undirected, Acyclic/Cyclic, Weighted
* Dijkstra’s, BFS, DFS
* Topological Sort
— PriorityQueues
* BinaryHeap
— Dictionaries
* HashMap, TreeMap
— Union Find
* Uptrees

CSE373: Data Structures and algorithms

Everything is a Trade-off

* Very rarely is there a “perfect” solution in the real
world.

— Often must prioritize things like:
* space vs. time

* simplicity vs. robustness

 Understanding the ins and outs of each structure

allows you to make informed design decisions that
balance these trade-offs.

Reinventing the Wheel

 More often than not, the problem you are trying to
solve is not entirely unique

— Usually it is possible to simplify a problem down to a few
core principles
* Important operations
* Space/time constraints

* Once you have found an appropriate analog, allow
the well-thought out design to assist you
— Example: AVL trees handle balancing for you
— Example: Hash tables will handle collisions for you

Don’t let the Abstract rule you!

* In this class, we have lived and died by the
asymptotic runtime, however this is not always the
case

— Sometimes simple and readable code is more important

— Sometimes you know very distinct things about your input
e Sorting input that is almost entirely sorted
* Dictionary of elements that have nearly identical keys

Question 1:

¢ ’

Given a value ‘X’ and an array of integers,

determine whether two of the numbers add up to °X

¢) .

Questions you should have asked me:

1)
2)

3)
4)

5)

6)
7)

Is the array in any particular order?

Should I consider the case where adding two large numbers could cause
an overflow?

Is space a factor, in other words, can | use an additional structure(s)?

Is this method going to be called frequently with different/the same value
of x’?

About how many values should | expect to see in the array, or is that
unspecified?

Will ‘x” always be a positive value?

Can | assume the array won’t always be empty, what if its null?

Why these questions matter!

1) Is the array in any particular order?

If the array is already sorted, then this question becomes a lot easier, and can
be done in O(n) time.

2) Should | consider the case where adding two large numbers could cause
an overflow?

If the integers are very large, | should use something other than ‘ints’ to store
my results, such as double or longs, or else | could get inconsistent results.

3) Is space a factor, in other words, can | use an additional structure(s)?

If space is not a factor, then it might be better to leave the original array
alone, and instead sort the array in a separate structure. Or even use a BST
representation.

Why these questions matter!

1) Is this method going to be called frequently with different/the same
value of ‘x’?

This is a *great™ question. If the client will be calling this frequently, it might
make more sense to store a copy of the sorted array to prevent needing to
re-sort it every time. This could drastically speed-up frequent calls. This
process is called memoization.

2) About how many values should | expect to see in the array, or is that
unspecified?

Often times, it is safe to assume that there could be any range of values (or in
our case, asymptotically very many). However, this is not always the case. Our
solution to this problem may be different if we knew that there were always
exactly 12 values in our array.

Question 1.5

Given an array of integers, return a new array of
the same values without any duplicates

CSE373: Data Structures and algorithms

Question 1.5

Given an array of integers, return a new array of
the same values without any duplicates

create set, s

for each value, x in input_array:
add x to s

create new array, result

for each value, X in s:
add x to result

return result

Question 2:

Given an array that contains the values 1 through

n’ two times each, find the one number that is
contained only 1 time.

CSE373: Data Structures and algorithms

11

Question 2:

Given an array that contains the values 1 through

[9

n’ two times each, find the one number that is
contained only 1 time.

create map from strings->ints, map
for each value, x in input_array:
if !map.contains(x):
map.put(x, 0)
map.put(x, map.get(x) + 1)

for each key in map, key:
if map.get(key) == 1:
return key

Question 3:

Given a list of integers, find the highest
obtainable by concatenating them together.

For example: given [9, 918, 91/], result =
For example: given [1, 112, 113], result =

value

9918917
1131121

Question 3:

Given a list of integers, find the highest value
obtainable by concatenating them together.

For example: given [9, 918, 91/], result = 9918917/
For example: given [1, 112, 113], result = 1131121

-Convert all numbers to strings

-Sort numbers based on largest first
number, break ties by moving on to next
digit if its greater than the previous

Question 4:

Given a very large file of integers
can store in memory), return a list
100 numbers in the file

CSE373: Data Structures and algorithms

(more than you
of the largest

15

Question 4:

Given a very large file of integers

(more than you

can store in memory), return a list of the largest

100 numbers in the file

Create min-heap, h
Add first 100 values to h

X = next number

if x > h.getMin():
h.deleteMin()
h.add (x)

create new list, 1
while h.isEmpty():

l.add(h.deleteMin())
return 1

while there are remaining numbers:

Question 5

Given an unsorted array of values, find the
biggest value in the array.

(Harder alternative)
Find the k’th biggest value in the array

CSE373: Data Structures and algorithms

znd

17

Question 5

Given an unsorted array of values, find the 2nd
biggest value in the array.

sort input_array
return input_array[len - 2]

max = -infinity
2" max = -infinity
for each value, v in input_array:
if v > max:
2" max = max
max = v
return 2" max

max-heap h = heapify(input_array)
h.removeMax ()
Return h.removeMax()

Question 6

Given a list of strings, write a method that returns

the frequency of the word with the highest
frequency.

(Harder version)

Given a list of strings, write a method that returns
a sorted list of words based on frequency

Question 6

Given a list of strings, write a method that returns
the frequency of the word with the highest
frequency.

max = 0
map from string->int, map
for each string, s:
if !'map.contains(s):
map.put(s,0)
map.put(s, map.get(s) + 1)
if map.get(s) > max:
max = 0

Question 7/:

Given an array of strings that are each sorted
lexicographically, determine the order of characters in the
given alphabet.

For example, given the english alphabet, the ordering is:
“a,b,c,d,e,f . . . X,y,x".

Your output should be the lexicographic order of only the
characters that were found in the input strings.

For example: input = [xyz, yk, zk, xm, my], then the output
would be [x,m,y,z,k]

