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Outline 

Done: 
•  How to write a parallel algorithm with fork and join 
•  Why using divide-and-conquer with lots of small tasks is best 

–  Combines results in parallel 
–  (Assuming library can handle “lots of small threads”) 

Now: 
•  More examples of simple parallel programs that fit the “map” or 

“reduce” patterns 
•  Teaser: Beyond maps and reductions 
•  Asymptotic analysis for fork-join parallelism 
•  Amdahl’s Law 
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What else looks like this? 
•  Saw summing an array went from O(n) sequential to O(log n) 

parallel (assuming a lot of processors and very large n)! 
–  Exponential speed-up in theory (n / log n grows exponentially) 

+ + + + + + + + 

+ + + + 

+ + 
+ 

•  Anything that can use results from two halves and merge them 
in O(1) time has the same property… 
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Examples 

•  Maximum or minimum element 

•  Is there an element satisfying some property (e.g., is there a 17)? 

•  Left-most element satisfying some property (e.g., first 17) 
–  What should the recursive tasks return? 
–  How should we merge the results? 

•  Corners of a rectangle containing all points (a “bounding box”) 

•  Counts, for example, number of strings that start with a vowel 
–  This is just summing with a different base case 
–  Many problems are! 

Fall 2015 CSE373: Data Structures & Algorithms 4 



Reductions 

•  Computations of this form are called reduction 

•  Produce single answer from collection via an associative operator 
–  Associative: a + (b+c) = (a+b) + c 
–  Examples: max, count, leftmost, rightmost, sum, product, … 
–  Non-examples: median, subtraction, exponentiation 

 

•  But some things are inherently sequential 
–  How we process arr[i] may depend entirely on the result of 

processing arr[i-1] 
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Even easier: Maps (Data Parallelism) 

•  A map operation operates on each element of a collection 
independently to create a new collection of the same size 
–  No combining results 
–  For arrays, this is so trivial some hardware has direct support 

•  Canonical example: Vector addition 

int[] vector_add(int[] arr1, int[] arr2){ 
  assert (arr1.length == arr2.length); 
  result = new int[arr1.length]; 
  FORALL(i=0; i < arr1.length; i++) { 
    result[i] = arr1[i] + arr2[i]; 
  } 
  return result; 
} 
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In Java 

•  Even though there is no result-combining, it still helps with load 
balancing to create many small tasks 
–  Maybe not for vector-add but for more compute-intensive 

maps 
–  The forking is O(log n) whereas theoretically other approaches 

to vector-add is O(1) 

class VecAdd extends java.lang.Thread { 
  int lo; int hi; int[] res; int[] arr1; int[] arr2;    
  VecAdd(int l,int h,int[] r,int[] a1,int[] a2){ … } 
  protected void run(){ 
    if(hi – lo < SEQUENTIAL_CUTOFF) { 

 for(int i=lo; i < hi; i++) 
        res[i] = arr1[i] + arr2[i]; 
    } else { 
      int mid = (hi+lo)/2; 
      VecAdd left = new VecAdd(lo,mid,res,arr1,arr2); 
      VecAdd right= new VecAdd(mid,hi,res,arr1,arr2);    
      left.start(); 
      right.run(); 
      left.join(); 
    } 
  } 
} 
int[] add(int[] arr1, int[] arr2){ 
  assert (arr1.length == arr2.length); 
  int[] ans = new int[arr1.length]; 
  (new VecAdd(0,arr.length,ans,arr1,arr2).run(); 
  return ans; 
} 



Maps and reductions 

Maps and reductions: the “workhorses” of parallel programming 

–  By far the two most important and common patterns 

–  Learn to recognize when an algorithm can be written in 
terms of maps and reductions 

–  Use maps and reductions to describe (parallel) algorithms 

–  Programming them becomes “trivial” with a little practice 
•  Exactly like sequential for-loops seem second-nature 
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•  Some problems are “inherently sequential” 
“Nine women can’t make a baby in one month” 

•  But not all parallelizable problems are maps and reductions 

•  If had one more lecture, would show “parallel prefix”, a clever 
algorithm to parallelize the problem that this sequential code solves 

Beyond maps and reductions 
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int[] prefix_sum(int[] input){ 
  int[] output = new int[input.length]; 
  output[0] = input[0]; 
  for(int i=1; i < input.length; i++) 
    output[i] = output[i-1]+input[i]; 
  return output; 
} 

input 

output 

6 4 16 10 16 14 2 8 

6  10  26  36  52  66  68  76 



Digression:  MapReduce on clusters 
•  You may have heard of Google’s “map/reduce” 

–  Or the open-source version Hadoop 

•  Idea: Perform maps/reduces on data using many machines 
–  The system takes care of distributing the data and managing 

fault tolerance 
–  You just write code to map one element and reduce 

elements to a combined result 

•  Separates how to do recursive divide-and-conquer from what 
computation to perform 
–  Separating concerns is good software engineering 
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Analyzing algorithms 

•  Like all algorithms, parallel algorithms should be: 
–  Correct  
–  Efficient 

•  For our algorithms so far, correctness is “obvious” so we’ll focus 
on efficiency 
–  Want asymptotic bounds 
–  Want to analyze the algorithm without regard to a specific 

number of processors 
–  Here: Identify the “best we can do” if the underlying thread-

scheduler does its part 
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Work and Span 

Let TP be the running time if there are P processors available 
 
Two key measures of run-time: 
 
•  Work: How long it would take 1 processor = T1 

–  Just “sequential-ize” the recursive forking 

•  Span: How long it would take infinity processors = T∞ 
–  The longest dependence-chain 
–  Example: O(log n) for summing an array  

•  Notice having > n/2 processors is no additional help 

Fall 2015 CSE373: Data Structures & Algorithms 12 



Our simple examples 
•  Picture showing all the “stuff that happens” during a reduction or 

a map: it’s a (conceptual!) DAG 

base cases 

divide  

combine 
results  
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Connecting to performance 

•  Recall: TP = running time if there are P processors available 
 

•  Work = T1 = sum of run-time of all nodes in the DAG 
–  That lonely processor does everything 
–  Any topological sort is a legal execution 
–  O(n) for maps and reductions 

•  Span = T∞ = sum of run-time of all nodes on the most-expensive 
path in the DAG 
–  Note: costs are on the nodes not the edges 
–  Our infinite army can do everything that is ready to be done, 

but still has to wait for earlier results 
–  O(log n) for simple maps and reductions 
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Speed-up 
Parallel algorithms is about decreasing span without  

increasing work too much 
 

•  Speed-up on P processors: T1 / TP   
 

•  Parallelism is the maximum possible speed-up: T1 / T ∞  

–  At some point, adding processors won’t help 
–  What that point is depends on the span 

•  In practice we have P processors.  How well can we do? 
–  We cannot do better than O(T ∞) (“must obey the span”) 
–  We cannot do better than O(T1 / P) (“must do all the work”) 
–  Not shown: With a “good thread scheduler”, can do this well 

(within a constant factor of optimal!) 
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Examples 

TP  =  O(max((T1 / P) ,T ∞)) 

•  In the algorithms seen so far (e.g., sum an array): 
–   T1 = O(n) 
–   T ∞= O(log n) 

–  So expect (ignoring overheads): TP  =  O(max(n/P, log n)) 
 

•  Suppose instead: 
–   T1 = O(n2) 
–   T ∞= O(n) 

–  So expect (ignoring overheads): TP  =  O(max(n2/P, n)) 
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Amdahl’s Law (mostly bad news) 

•  So far: analyze parallel programs in terms of work and span 

•  In practice, typically have parts of programs that parallelize well… 

–  Such as maps/reductions over arrays 
 
…and parts that don’t parallelize at all 
 
–  Such as reading a linked list, getting input, doing 

computations where each needs the previous step, etc. 
 

Fall 2015 CSE373: Data Structures & Algorithms 17 



Amdahl’s Law (mostly bad news) 

Let the work (time to run on 1 processor) be 1 unit time 
 

Let S be the portion of the execution that can’t be parallelized 
 

Then:    T1 = S + (1-S) = 1 
 

Suppose parallel portion parallelizes perfectly (generous assumption) 
 

Then:    TP = S + (1-S)/P 
 

So the overall speedup with P processors is (Amdahl’s Law): 
T1 / TP  = 1 / (S + (1-S)/P)   

 

And the parallelism (infinite processors) is: 
T1 / T∞  = 1 / S 
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Why such bad news 

 T1 / TP  = 1 / (S + (1-S)/P)    T1 / T∞  = 1 / S 

•  Suppose 33% of a program’s execution is sequential 
–  Then a billion processors won’t give a speedup over 3 

•  Suppose you miss the good old days (1980-2005) where 12ish 
years was long enough to get 100x speedup 
–  Now suppose in 12 years, clock speed is the same but you 

get 256 processors instead of 1 
–  For 256 processors to get at least 100x speedup, we need 

   100 ≤ 1 / (S + (1-S)/256) 
 Which means S ≤ .0061  (i.e., 99.4% perfectly parallelizable)  
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All is not lost 

Amdahl’s Law is a bummer! 
–  Unparallelized parts become a bottleneck very quickly 
–  But it doesn’t mean additional processors are worthless 

 
•  We can find new parallel algorithms 

–  Some things that seem sequential are actually parallelizable 

•  We can change the problem or do new things 
–  Example: Video games use tons of parallel processors   

•  They are not rendering 10-year-old graphics faster 
•  They are rendering more beautiful(?) monsters 
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Moore and Amdahl 

•  Moore’s “Law” is an observation about the progress of the 
semiconductor industry 
–  Transistor density doubles roughly every 18 months 

•  Amdahl’s Law is a mathematical theorem 
–  Diminishing returns of adding more processors 

•  Both are incredibly important in designing computer systems 
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