
CSE373: Data Structures & Algorithms

Lecture 22: Parallel Reductions, Maps, and
Algorithm Analysis

Kevin Quinn
Fall 2015

Outline

Done:
•  How to write a parallel algorithm with fork and join
•  Why using divide-and-conquer with lots of small tasks is best

–  Combines results in parallel
–  (Assuming library can handle “lots of small threads”)

Now:
•  More examples of simple parallel programs that fit the “map” or

“reduce” patterns
•  Teaser: Beyond maps and reductions
•  Asymptotic analysis for fork-join parallelism
•  Amdahl’s Law

Fall 2015 CSE373: Data Structures & Algorithms 2

What else looks like this?
•  Saw summing an array went from O(n) sequential to O(log n)

parallel (assuming a lot of processors and very large n)!
–  Exponential speed-up in theory (n / log n grows exponentially)

+ + + + + + + +

+ + + +

+ +
+

•  Anything that can use results from two halves and merge them
in O(1) time has the same property…

Fall 2015 CSE373: Data Structures & Algorithms 3

Examples

•  Maximum or minimum element

•  Is there an element satisfying some property (e.g., is there a 17)?

•  Left-most element satisfying some property (e.g., first 17)
–  What should the recursive tasks return?
–  How should we merge the results?

•  Corners of a rectangle containing all points (a “bounding box”)

•  Counts, for example, number of strings that start with a vowel
–  This is just summing with a different base case
–  Many problems are!

Fall 2015 CSE373: Data Structures & Algorithms 4

Reductions

•  Computations of this form are called reduction

•  Produce single answer from collection via an associative operator
–  Associative: a + (b+c) = (a+b) + c
–  Examples: max, count, leftmost, rightmost, sum, product, …
–  Non-examples: median, subtraction, exponentiation

•  But some things are inherently sequential
–  How we process arr[i] may depend entirely on the result of

processing arr[i-1]

Fall 2015 CSE373: Data Structures & Algorithms 5

Even easier: Maps (Data Parallelism)

•  A map operation operates on each element of a collection
independently to create a new collection of the same size
–  No combining results
–  For arrays, this is so trivial some hardware has direct support

•  Canonical example: Vector addition

int[] vector_add(int[] arr1, int[] arr2){
 assert (arr1.length == arr2.length);
 result = new int[arr1.length];
 FORALL(i=0; i < arr1.length; i++) {
 result[i] = arr1[i] + arr2[i];
 }
 return result;
}

Fall 2015 CSE373: Data Structures & Algorithms 6

In Java

•  Even though there is no result-combining, it still helps with load
balancing to create many small tasks
–  Maybe not for vector-add but for more compute-intensive

maps
–  The forking is O(log n) whereas theoretically other approaches

to vector-add is O(1)

class VecAdd extends java.lang.Thread {
 int lo; int hi; int[] res; int[] arr1; int[] arr2;
 VecAdd(int l,int h,int[] r,int[] a1,int[] a2){ … }
 protected void run(){
 if(hi – lo < SEQUENTIAL_CUTOFF) {

 for(int i=lo; i < hi; i++)
 res[i] = arr1[i] + arr2[i];
 } else {
 int mid = (hi+lo)/2;
 VecAdd left = new VecAdd(lo,mid,res,arr1,arr2);
 VecAdd right= new VecAdd(mid,hi,res,arr1,arr2);
 left.start();
 right.run();
 left.join();
 }
 }
}
int[] add(int[] arr1, int[] arr2){
 assert (arr1.length == arr2.length);
 int[] ans = new int[arr1.length];
 (new VecAdd(0,arr.length,ans,arr1,arr2).run();
 return ans;
}

Maps and reductions

Maps and reductions: the “workhorses” of parallel programming

–  By far the two most important and common patterns

–  Learn to recognize when an algorithm can be written in
terms of maps and reductions

–  Use maps and reductions to describe (parallel) algorithms

–  Programming them becomes “trivial” with a little practice
•  Exactly like sequential for-loops seem second-nature

Fall 2015 CSE373: Data Structures & Algorithms 8

•  Some problems are “inherently sequential”
“Nine women can’t make a baby in one month”

•  But not all parallelizable problems are maps and reductions

•  If had one more lecture, would show “parallel prefix”, a clever
algorithm to parallelize the problem that this sequential code solves

Beyond maps and reductions

Fall 2015 CSE373: Data Structures & Algorithms 9

int[] prefix_sum(int[] input){
 int[] output = new int[input.length];
 output[0] = input[0];
 for(int i=1; i < input.length; i++)
 output[i] = output[i-1]+input[i];
 return output;
}

input

output

6 4 16 10 16 14 2 8

6 10 26 36 52 66 68 76

Digression: MapReduce on clusters
•  You may have heard of Google’s “map/reduce”

–  Or the open-source version Hadoop

•  Idea: Perform maps/reduces on data using many machines
–  The system takes care of distributing the data and managing

fault tolerance
–  You just write code to map one element and reduce

elements to a combined result

•  Separates how to do recursive divide-and-conquer from what
computation to perform
–  Separating concerns is good software engineering

Fall 2015 CSE373: Data Structures & Algorithms 10

Analyzing algorithms

•  Like all algorithms, parallel algorithms should be:
–  Correct
–  Efficient

•  For our algorithms so far, correctness is “obvious” so we’ll focus
on efficiency
–  Want asymptotic bounds
–  Want to analyze the algorithm without regard to a specific

number of processors
–  Here: Identify the “best we can do” if the underlying thread-

scheduler does its part

Fall 2015 CSE373: Data Structures & Algorithms 11

Work and Span

Let TP be the running time if there are P processors available

Two key measures of run-time:

•  Work: How long it would take 1 processor = T1

–  Just “sequential-ize” the recursive forking

•  Span: How long it would take infinity processors = T∞
–  The longest dependence-chain
–  Example: O(log n) for summing an array

•  Notice having > n/2 processors is no additional help

Fall 2015 CSE373: Data Structures & Algorithms 12

Our simple examples
•  Picture showing all the “stuff that happens” during a reduction or

a map: it’s a (conceptual!) DAG

base cases

divide

combine
results

Fall 2015 CSE373: Data Structures & Algorithms 13

Connecting to performance

•  Recall: TP = running time if there are P processors available

•  Work = T1 = sum of run-time of all nodes in the DAG
–  That lonely processor does everything
–  Any topological sort is a legal execution
–  O(n) for maps and reductions

•  Span = T∞ = sum of run-time of all nodes on the most-expensive
path in the DAG
–  Note: costs are on the nodes not the edges
–  Our infinite army can do everything that is ready to be done,

but still has to wait for earlier results
–  O(log n) for simple maps and reductions

Fall 2015 CSE373: Data Structures & Algorithms 14

Speed-up
Parallel algorithms is about decreasing span without

increasing work too much

•  Speed-up on P processors: T1 / TP

•  Parallelism is the maximum possible speed-up: T1 / T ∞

–  At some point, adding processors won’t help
–  What that point is depends on the span

•  In practice we have P processors. How well can we do?
–  We cannot do better than O(T ∞) (“must obey the span”)
–  We cannot do better than O(T1 / P) (“must do all the work”)
–  Not shown: With a “good thread scheduler”, can do this well

(within a constant factor of optimal!)
 Fall 2015 CSE373: Data Structures & Algorithms 15

Examples

TP = O(max((T1 / P) ,T ∞))

•  In the algorithms seen so far (e.g., sum an array):
–  T1 = O(n)
–  T ∞= O(log n)

–  So expect (ignoring overheads): TP = O(max(n/P, log n))

•  Suppose instead:
–  T1 = O(n2)
–  T ∞= O(n)

–  So expect (ignoring overheads): TP = O(max(n2/P, n))

Fall 2015 CSE373: Data Structures & Algorithms 16

Amdahl’s Law (mostly bad news)

•  So far: analyze parallel programs in terms of work and span

•  In practice, typically have parts of programs that parallelize well…

–  Such as maps/reductions over arrays

…and parts that don’t parallelize at all

–  Such as reading a linked list, getting input, doing

computations where each needs the previous step, etc.

Fall 2015 CSE373: Data Structures & Algorithms 17

Amdahl’s Law (mostly bad news)

Let the work (time to run on 1 processor) be 1 unit time

Let S be the portion of the execution that can’t be parallelized

Then: T1 = S + (1-S) = 1

Suppose parallel portion parallelizes perfectly (generous assumption)

Then: TP = S + (1-S)/P

So the overall speedup with P processors is (Amdahl’s Law):
T1 / TP = 1 / (S + (1-S)/P)

And the parallelism (infinite processors) is:
T1 / T∞ = 1 / S

Fall 2015 CSE373: Data Structures & Algorithms 18

Why such bad news

 T1 / TP = 1 / (S + (1-S)/P) T1 / T∞ = 1 / S

•  Suppose 33% of a program’s execution is sequential
–  Then a billion processors won’t give a speedup over 3

•  Suppose you miss the good old days (1980-2005) where 12ish
years was long enough to get 100x speedup
–  Now suppose in 12 years, clock speed is the same but you

get 256 processors instead of 1
–  For 256 processors to get at least 100x speedup, we need

 100 ≤ 1 / (S + (1-S)/256)
 Which means S ≤ .0061 (i.e., 99.4% perfectly parallelizable)

Fall 2015 CSE373: Data Structures & Algorithms 19

All is not lost

Amdahl’s Law is a bummer!
–  Unparallelized parts become a bottleneck very quickly
–  But it doesn’t mean additional processors are worthless

•  We can find new parallel algorithms

–  Some things that seem sequential are actually parallelizable

•  We can change the problem or do new things
–  Example: Video games use tons of parallel processors

•  They are not rendering 10-year-old graphics faster
•  They are rendering more beautiful(?) monsters

Fall 2015 CSE373: Data Structures & Algorithms 20

Moore and Amdahl

•  Moore’s “Law” is an observation about the progress of the
semiconductor industry
–  Transistor density doubles roughly every 18 months

•  Amdahl’s Law is a mathematical theorem
–  Diminishing returns of adding more processors

•  Both are incredibly important in designing computer systems

Fall 2015 CSE373: Data Structures & Algorithms 21

