
CSE373: Data Structures & Algorithms

Introduction to Multithreading & Fork-Join
Parallelism

Kevin Quinn
Fall 2015

Changing a major assumption

So far most or all of your study of computer science has assumed

One thing happened at a time

Called sequential programming – everything part of one sequence

Removing this assumption creates major challenges & opportunities

–  Programming: Divide work among threads of execution and
coordinate (synchronize) among them

–  Algorithms: How can parallel activity provide speed-up
 (more throughput: work done per unit time)

–  Data structures: May need to support concurrent access
(multiple threads operating on data at the same time)

2 CSE373: Data Structures & Algorithms Fall 2015

A simplified view of history
Writing correct and efficient multithreaded code is often much more

difficult than for single-threaded (i.e., sequential) code
–  Especially in common languages like Java and C
–  So typically stay sequential if possible

From roughly 1980-2005, desktop computers got exponentially
faster at running sequential programs
–  About twice as fast every couple years

But nobody knows how to continue this
–  Increasing clock rate generates too much heat
–  Relative cost of memory access is too high
–  But we can keep making “wires exponentially

smaller” (Moore’s “Law”), so put multiple processors on the
same chip (“multicore”)

3 CSE373: Data Structures & Algorithms Fall 2015

What to do with multiple processors?

•  Next computer you buy will likely have 4 processors
–  Wait a few years and it will be 8, 16, 32, …
–  The chip companies have decided to do this (not a “law”)

•  What can you do with them?
–  Run multiple totally different programs at the same time

•  Already do that? Yes, but with time-slicing
–  Do multiple things at once in one program

•  Our focus – more difficult
•  Requires rethinking everything from asymptotic

complexity to how to implement data-structure operations

4 CSE373: Data Structures & Algorithms Fall 2015

Parallelism vs. Concurrency

5 CSE373: Data Structures & Algorithms

Parallelism:
 Use extra resources to
 solve a problem faster

resources

Concurrency:
 Correctly and efficiently manage
 access to shared resources

requests work

resource

Fall 2015

Parallelism vs. Concurrency

6 CSE373: Data Structures & Algorithms

There is some connection:
–  Common to use threads for both
–  If parallel computations need access to shared resources,

then the concurrency needs to be managed
We will just do a little parallelism, avoiding concurrency issues

Fall 2015

Concurrency is when two or
more tasks can start, run, and
complete in overlapping time
periods. It doesn't necessarily
mean they'll ever both be
running at the same instant.

Parallelism is when
tasks literally run at the
same time, eg. on a
multicore processor.

An analogy

CS1 idea: A program is like a recipe for a cook
–  One cook who does one thing at a time! (Sequential)

Parallelism:
–  Have lots of potatoes to slice?
–  Hire helpers, hand out potatoes and knives
–  But too many chefs and you spend all your time coordinating

Concurrency:
–  Lots of cooks making different things, but only 4 stove burners
–  Want to allow access to all 4 burners, but not cause spills or

incorrect burner settings

7 CSE373: Data Structures & Algorithms Fall 2015

Parallelism Example
Parallelism: Use extra resources to solve a problem faster

Pseudocode for array sum
–  Bad style for reasons we’ll see, but may get roughly 4x speedup

8 CSE373: Data Structures & Algorithms

int sum(int[] arr){
 res = new int[4];
 len = arr.length;
 FORALL(i=0; i < 4; i++) { //parallel iterations
 res[i] = sumRange(arr,i*len/4,(i+1)*len/4);
 }
 return res[0]+res[1]+res[2]+res[3];
}
int sumRange(int[] arr, int lo, int hi) {
 result = 0;
 for(j=lo; j < hi; j++)
 result += arr[j];
 return result;
}

Fall 2015

Concurrency Example
Concurrency: Correctly and efficiently manage access to shared

resources

Pseudocode for a shared chaining hashtable
–  Prevent bad interleavings (correctness)
–  But allow some concurrent access (performance)

9 CSE373: Data Structures & Algorithms

class Hashtable<K,V> {
 …
 void insert(K key, V value) {
 int bucket = …;
 prevent-other-inserts/lookups in table[bucket]
 do the insertion
 re-enable access to table[bucket]
 }
 V lookup(K key) {

 (similar to insert, but can allow concurrent
 lookups to same bucket)

 }
}

Fall 2015

Shared memory
The model we will assume is shared memory with explicit threads

–  Not the only approach, may not be best, but time for only one

Old story: A running program has
–  One program counter (current statement executing)
–  One call stack (with each stack frame holding local variables)
–  Objects in the heap created by memory allocation (i.e., new)

•  (nothing to do with data structure called a heap)
–  Static fields

New story:
–  A set of threads, each with its own program counter & call stack

•  No access to another thread’s local variables
–  Threads can (implicitly) share static fields / objects

•  To communicate, write somewhere another thread reads
10 CSE373: Data Structures & Algorithms Fall 2015

Shared memory

11 CSE373: Data Structures & Algorithms

…

pc=…

…

 pc=…

…

 pc=…

…

Unshared:
locals and
control

Shared:
objects and
static fields

Threads each have own unshared call stack and current statement
–  (pc for “program counter”)
–  local variables are numbers, null, or heap references

Any objects can be shared, but most are not

Fall 2015

Our Needs

To write a shared-memory parallel program, need new primitives
from a programming language or library

•  Ways to create and run multiple things at once

–  Let’s call these things threads

•  Ways for threads to share memory
–  Often just have threads with references to the same objects

•  Ways for threads to coordinate (a.k.a. synchronize)
–  A way for one thread to wait for another to finish
–  [Other features needed in practice for concurrency]

12 CSE373: Data Structures & Algorithms Fall 2015

Java basics
Learn a couple basics built into Java via java.lang.Thread

–  But for style of parallel programming we’ll advocate, do not use
these threads; use Java 7’s ForkJoin Framework instead

To get a new thread running:
1.  Define a subclass C of java.lang.Thread, overriding run
2.  Create an object of class C
3.  Call that object’s start method

• start sets off a new thread, using run as its “main”

What if we instead called the run method of C?
–  This would just be a normal method call, in the current thread

Let’s see how to share memory and coordinate via an example…

13 CSE373: Data Structures & Algorithms Fall 2015

Parallelism idea
•  Example: Sum elements of a large array
•  Idea: Have 4 threads simultaneously sum 1/4 of the array

–  Warning: This is an inferior first approach

 ans0 ans1 ans2 ans3
 +
 ans

–  Create 4 thread objects, each given a portion of the work
–  Call start() on each thread object to actually run it in parallel
–  Wait for threads to finish using join()
–  Add together their 4 answers for the final result

14 CSE373: Data Structures & Algorithms Fall 2015

First attempt, part 1

15 CSE373: Data Structures & Algorithms

class SumThread extends java.lang.Thread {

 int lo; // arguments
 int hi;
 int[] arr;

 int ans = 0; // result

 SumThread(int[] a, int l, int h) {
 lo=l; hi=h; arr=a;
 }

 public void run() { //override must have this type
 for(int i=lo; i < hi; i++)
 ans += arr[i];
 }
}

Because we must override a no-arguments/no-result run,
we use fields to communicate across threads

Fall 2015

First attempt, continued (wrong)

16 CSE373: Data Structures & Algorithms

class SumThread extends java.lang.Thread {
 int lo, int hi, int[] arr; // arguments
 int ans = 0; // result
 SumThread(int[] a, int l, int h) { … }
 public void run(){ … } // override
}

int sum(int[] arr){ // can be a static method
 int len = arr.length;
 int ans = 0;
 SumThread[] ts = new SumThread[4];
 for(int i=0; i < 4; i++) // do parallel computations
 ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);
 for(int i=0; i < 4; i++) // combine results
 ans += ts[i].ans;
 return ans;
}

Fall 2015

Second attempt (still wrong)

17 CSE373: Data Structures & Algorithms

int sum(int[] arr){ // can be a static method
 int len = arr.length;
 int ans = 0;
 SumThread[] ts = new SumThread[4];
 for(int i=0; i < 4; i++){// do parallel computations
 ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);
 ts[i].start(); // start not run
 }
 for(int i=0; i < 4; i++) // combine results
 ans += ts[i].ans;
 return ans;
}

class SumThread extends java.lang.Thread {
 int lo, int hi, int[] arr; // arguments
 int ans = 0; // result
 SumThread(int[] a, int l, int h) { … }
 public void run(){ … } // override
}

Fall 2015

Third attempt (correct in spirit)

18 CSE373: Data Structures & Algorithms

int sum(int[] arr){// can be a static method
 int len = arr.length;
 int ans = 0;
 SumThread[] ts = new SumThread[4];
 for(int i=0; i < 4; i++){// do parallel computations
 ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);
 ts[i].start();
 }
 for(int i=0; i < 4; i++) { // combine results
 ts[i].join(); // wait for helper to finish!
 ans += ts[i].ans;
 }
 return ans;
}

class SumThread extends java.lang.Thread {
 int lo, int hi, int[] arr; // arguments
 int ans = 0; // result
 SumThread(int[] a, int l, int h) { … }
 public void run(){ … } // override
}

Fall 2015

Join (not the most descriptive word)
•  The Thread class defines various methods you could not

implement on your own
–  For example: start, which calls run in a new thread

•  The join method is valuable for coordinating this kind of
computation
–  Caller blocks until/unless the receiver is done executing

(meaning the call to run returns)
–  Else we would have a race condition on ts[i].ans

•  This style of parallel programming is called “fork/join”

•  Java detail: code has 1 compile error because join may throw
java.lang.InterruptedException
–  In basic parallel code, should be fine to catch-and-exit

19 CSE373: Data Structures & Algorithms Fall 2015

Shared memory?

•  Fork-join programs (thankfully) do not require much focus on
sharing memory among threads

•  But in languages like Java, there is memory being shared.
In our example:
–  lo, hi, arr fields written by “main” thread, read by helper

thread
–  ans field written by helper thread, read by “main” thread

•  When using shared memory, you must avoid race conditions
–  We will stick with join to do so

20 CSE373: Data Structures & Algorithms Fall 2015

A better approach
Several reasons why this is a poor parallel algorithm

1.  Want code to be reusable and efficient across platforms
–  “Forward-portable” as core count grows
–  So at the very least, parameterize by the number of threads

21 CSE373: Data Structures & Algorithms

int sum(int[] arr, int numTs){
 int ans = 0;
 SumThread[] ts = new SumThread[numTs];
 for(int i=0; i < numTs; i++){
 ts[i] = new SumThread(arr,(i*arr.length)/numTs,
 ((i+1)*arr.length)/numTs);
 ts[i].start();
 }
 for(int i=0; i < numTs; i++) {
 ts[i].join();
 ans += ts[i].ans;
 }
 return ans;
}
 Fall 2015

A Better Approach
2.  Want to use (only) processors “available to you now”

–  Not used by other programs or threads in your program
•  Maybe caller is also using parallelism
•  Available cores can change even while your threads run

–  If you have 3 processors available and using 3 threads would
take time X, then creating 4 threads would take time 1.5X
•  Example: 12 units of work, 3 processors

–  Work divided into 3 parts will take 4 units of time
–  Work divided into 4 parts will take 3*2 units of time

22 CSE373: Data Structures & Algorithms

// numThreads == numProcessors is bad
// if some are needed for other things
int sum(int[] arr, int numTs){
 …
}

Fall 2015

A Better Approach

3. Though unlikely for sum, in general subproblems may take
significantly different amounts of time

–  Example: Apply method f to every array element, but maybe
f is much slower for some data items
•  Example: Is a large integer prime?

–  If we create 4 threads and all the slow data is processed by 1
of them, we won’t get nearly a 4x speedup
•  Example of a load imbalance

23 CSE373: Data Structures & Algorithms Fall 2015

A Better Approach
The counterintuitive (?) solution to all these problems is to use lots of

threads, far more than the number of processors
–  But this will require changing our algorithm
–  [And using a different Java library]

24 CSE373: Data Structures & Algorithms

 ans0 ans1 … ansN
 ans

1.  Forward-portable: Lots of helpers each doing a small piece
2.  Processors available: Hand out “work chunks” as you go

•  If 3 processors available and have 100 threads, then ignoring
constant-factor overheads, extra time is < 3%

3.  Load imbalance: No problem if slow thread scheduled early enough
•  Variation probably small anyway if pieces of work are small

 Fall 2015

Naïve algorithm is poor
Suppose we create 1 thread to process every 1000 elements

25 CSE373: Data Structures & Algorithms

int sum(int[] arr){
 …
 int numThreads = arr.length / 1000;
 SumThread[] ts = new SumThread[numThreads];
 …
}

Then combining results will have arr.length / 1000 additions
•  Linear in size of array (with constant factor 1/1000)
•  Previously we had only 4 pieces (constant in size of array)

In the extreme, if we create 1 thread for every 1 element, the loop
to combine results has length-of-array iterations

•  Just like the original sequential algorithm
 Fall 2015

A better idea

This is straightforward to implement using divide-and-conquer
–  Parallelism for the recursive calls

26 CSE373: Data Structures & Algorithms

+ + + + + + + +

+ + + +

+ +
+

Fall 2015

Divide-and-conquer to the rescue!

The key is to do the result-combining in parallel as well
–  And using recursive divide-and-conquer makes this natural
–  Easier to write and more efficient asymptotically!

27 CSE373: Data Structures & Algorithms Fall 2015

class SumThread extends java.lang.Thread {
 int lo; int hi; int[] arr; // arguments
 int ans = 0; // result
 SumThread(int[] a, int l, int h) { … }
 public void run(){ // override
 if(hi – lo < SEQUENTIAL_CUTOFF)
 for(int i=lo; i < hi; i++)
 ans += arr[i];
 else {
 SumThread left = new SumThread(arr,lo,(hi+lo)/2);
 SumThread right= new SumThread(arr,(hi+lo)/2,hi);
 left.start();
 right.start();
 left.join(); // don’t move this up a line – why?
 right.join();
 ans = left.ans + right.ans;
 }
 }
}
int sum(int[] arr){
 SumThread t = new SumThread(arr,0,arr.length);
 t.run();
 return t.ans;
}

Divide-and-conquer really works

•  The key is divide-and-conquer parallelizes the result-combining
–  If you have enough processors, total time is height of the tree:

O(log n) (optimal, exponentially faster than sequential O(n))
–  Next lecture: consider reality of P << n processors

28 CSE373: Data Structures & Algorithms

+ + + + + + + +

+ + + +

+ +

+

Fall 2015

Being realistic
•  In theory, you can divide down to single elements, do all your

result-combining in parallel and get optimal speedup
–  Total time O(n/numProcessors + log n)

•  In practice, creating all those threads and communicating
swamps the savings, so:
–  Use a sequential cutoff, typically around 500-1000

•  Eliminates almost all the recursive thread creation
(bottom levels of tree)

•  Exactly like quicksort switching to insertion sort for small
subproblems, but more important here

–  Do not create two recursive threads; create one and do the
other “yourself”
•  Cuts the number of threads created by another 2x

29 CSE373: Data Structures & Algorithms Fall 2015

Being realistic, part 2
•  Even with all this care, Java’s threads are too “heavyweight”

–  Constant factors, especially space overhead
–  Creating 20,000 Java threads just a bad idea L

•  The ForkJoin Framework is designed to meet the needs of divide-
and-conquer fork-join parallelism
–  In the Java 7 standard libraries
–  Library’s implementation is a fascinating but advanced topic

•  Next lecture will discuss its guarantees, not how it does it
–  Names of methods and how to use them slightly different

30 CSE373: Data Structures & Algorithms Fall 2015

