>

CSE373: Data Structures & Algorithms

Lecture 15: Software-Design Interlude —
Preserving Abstractions

Kevin Quinn
Fall 2015

Motivation

« Essential: knowing available data structures and their trade-offs
— You're taking a whole course on it! ©

* However, you will rarely if ever re-implement these “in real life”
— Provided by libraries

« But the key idea of an abstraction arises all the time “in real life”
— Clients do not know how it is implemented
— Clients do not need to know
— Clients cannot “break the abstraction” no matter what they do

Fall 2015 CSE373: Data Structures & Algorithms 2

Interface vs. implementation

* Provide a reusable interface without revealing implementation

» More difficult than it sounds due to aliasing and field-assignment
— Some common pitfalls

« So study it in terms of ADTs vs. data structures

— Will use priority queues as example in lecture, but any ADT
would do

— Key aspect of grading your homework on graphs

Fall 2015 CSE373: Data Structures & Algorithms 3

Recall the abstraction

Clients:

“not trusted by ADT
implementer”

Can perform any
sequence of ADT
operations

Can do anything
type-checker allows
on any accessible
objects

Fall 2015

new PQ(...)
insert(..)
deleteMin(...)

isEmpty ()

Data structure:

e Should document how

operations can be used and
what is checked (raising
appropriate exceptions)

— E.g., fields not null

» |f used correctly, correct

priority queue for any client

* Client “cannot see” the
implementation

— E.g., binary min heap

CSE373: Data Structures & Algorithms 4

Our example

» A priority queue with to-do items, so earlier dates “come first”
— Simpler example than using Java generics
« Exact method names and behavior not essential to example

Fall 2015

public class Date {
.. // some private fields (year, month, day)
public int getYear() {..}
public void setYear (int y) {..}
.. // more methods
}
public class ToDoItem ({
.. // some private fields (date, description)
public void setDate (Date d) {..}
public void setDescription(String d) {..}
.. // more methods

}

// continued next slide..

CSE373: Data Structures & Algorithms

Our example

» A priority queue with to-do items, so earlier dates “come first”
— Simpler example than using Java generics
« Exact method names and behavior not essential to example

public class Date { .. }
public class ToDoItem { .. }
public class ToDoPQ {
.. // some private fields (array, size, ..)
public ToDoPQ() (..}
void insert (ToDoItem t) {..}
ToDoItem deleteMin () {..}
boolean isEmpty () {..}

Fall 2015 CSE373: Data Structures & Algorithms

An obvious mistake

 Why we trained you to “mindlessly” make fields private:

public class ToDoPQ {
.. // other fields
public ToDoItem[] heap;
public ToDoPQ() {..}
void insert (ToDoItem t) {..}

}
// client:

pg = new ToDoPQ() ;
pg.heap = null;
pg.insert(.); // likely exception

« Today's lecture: private does not solve all your problems!
— Upcoming pitfalls can occur even with all private fields

Fall 2015 CSE373: Data Structures & Algorithms

Less obvious mistakes

public class ToDoPQ {
.. // all private fields

public ToDoPQ() {..}
void insert (ToDoItem i) {..}

}

// client:
ToDoPQ pg = new ToDoPQ() ;
ToDoItem i = new ToDoItem(..);

pg.insert (i) ;
i.setDescription(“some different thing”);
pg.insert(i); // same object after update
x = deleteMin(); // x's description???

y = deleteMin(); // y’'s description???

Fall 2015

CSE373: Data Structures & Algorithms

Aliasing and mutation

date:
description: “...”

PA—

« Client was able to update something inside the abstraction
because client had an alias to it!

— It is too hard to reason about and document what should
happen, so better software designs avoid the issue!

Fall 2015 CSE373: Data Structures & Algorithms 9

More bad clients

ToDoPQ pg = new ToDoPQ() ;
ToDoItem il = new ToDoItem(..); // year 2013
ToDoItem i2 = new ToDoItem(..); // year 2014
pg.insert(il) ;
pg.insert(i2) ;
il.setDate(..); // year 2015
x = deleteMin(); // “wrong” (??7?) item?
// What date does returned item have???

Fall 2015

CSE373: Data Structures & Algorithms

10

More bad clients

12 date:
description: “...”
date:

i descriptign: “...”

PO—

Fall 2015 CSE373: Data Structures & Algorithms 11

More bad clients

pg = new ToDoPQ() ;

ToDolItem il = new ToDoltem(..);
pg.insert(il) ;

il.setDate(null) ;

ToDoItem i2 = new ToDoItem(..) ;
pg.insert(i2); // NullPointerException???

Get exception inside data-structure code even if insert did a
careful check that the date in the ToDoItem is not null
 Bad client later invalidates the check

Fall 2015 CSE373: Data Structures & Algorithms

The general fix

« Avoid aliases into the internal data (the “red arrows™) by copying
objects as needed

— Do not use the same objects inside and outside the
abstraction because two sides do not know all mutation
(field-setting) that might occur

— “Copy-in-copy-out”

« A first attempt: public class ToDoPQ ({

void insert (ToDoItem i) {
ToDoItem internal i =
new ToDoItem(i.date,i.description);
.. // use only the internal object

}

Fall 2015 CSE373: Data Structures & Algorithms 13

Must copy the object

public class ToDoPQ {

void insert (ToDoItem i) {
ToDoItem internal i =
new ToDoItem(i.date,i.description);
.. // use only the internal object

}

* Notice this version accomplishes nothing
— Still the alias to the object we got from the client:

Fall 2015

public class ToDoPQ {

void insert (ToDoItem i) {
ToDoItem internal i = i;
.. // internal i refers to same object

}

CSE373: Data Structures & Algorithms

14

Copying works...

date:
description: “...

. description: “...”

e —

ToDoItem i = new ToDoItem(..);

pg = new ToDoPQ() ;

pg.insert (i) ;

i.setDescription(“some different thing”) ;
pg.insert (i) ;

x = deleteMin() ;

y = deleteMin() ;

Fall 2015 CSE373: Data Structures & Algorithms 15

Didin’t do enough copying yet

date:

| description: “...

_—" _description: “...”

pq\

Date d = new Date(..)

ToDoItem i = new ToDolItem(d, “buy beer”);
pg = new ToDoPQ() ;

pg.insert (i) ;

d.setYear (2015) ;

Fall 2015 CSE373: Data Structures & Algorithms 16

Deep copying

» For copying to work fully, usually need to also make copies of all
objects referred to (and that they refer to and so on...)

— All the way down to int, double, String, ...
— Called deep copying (versus our first attempt shallow-copy)

» Rule of thumb: Deep copy of things passed into abstraction

public class ToDoPQ {

void insert (ToDoItem i) {
ToDoItem internal i =
new ToDoItem(new Date(..),
i.description) ;
.. // use only the internal object

}

Fall 2015 CSE373: Data Structures & Algorithms 17

Constructors take input too

* General rule: Do not “trust” data passed to constructors
— Check properties and make deep copies

« Example: Floyd’s algorithm for buildHeap should:

— Check the array (e.g., for null values in fields of objects or
array positions)

— Make a deep copy: new array, new objects

public class ToDoPQ {
// a second constructor that uses
// Floyd’s algorithm, but good design
// deep-copies the array (and its contents)
void PriorityQueue (ToDoItem[] items) ({

}

Fall 2015 CSE373: Data Structures & Algorithms 18

That was copy-in, how copy-out...

« So we have seen:

— Need to deep-copy data passed into abstractions to avoid
pain and suffering

 Next:

— Need to deep-copy data passed out of abstractions to avoid
pain and suffering (unless data is “new” or no longer used in
abstraction)

e Then:

— If objects are immutable (no way to update fields or things
they refer to), then copying unnecessary

Fall 2015 CSE373: Data Structures & Algorithms 19

deleteMin IS fine

public class ToDoPQ {

ToDoItem deleteMin () ({
ToDoItem ans = heap[0];
.. // algorithm involving percolateDown
return ans;

}

« Does not create a “red arrow” because object returned is no
longer part of the data structure

 Returns an alias to object that was in the heap, but now it is not,
so conceptual “ownership” “transfers” to the client

Fall 2015 CSE373: Data Structures & Algorithms 20

getMin needs copyving

date:
description: “...”

public class ToDoPQ {

ToDoItem getMin() ({

int ans = heap[0];
return ans;

ToDoItem i1 = new ToDolItem(..) ;
pg = new ToDoPQ() ;

x = pqg.getMin() ;
x.setDate(...) ;

}

 Uh-oh, creates a “red arrow’
Fall 2015 CSE373: Data Structures & Algorithms 21

J

The fix

» Just like we deep-copy objects from clients before adding to our
data structure, we should deep-copy parts of our data structure
and return the copies to clients

» Copy-in and copy-out

public class ToDoPQ {
ToDoItem getMin() ({
int ans = heap[0];
return new ToDolItem(new Date(..),
ans .description) ;

Fall 2015 CSE373: Data Structures & Algorithms 22

Less copying

» (Deep) copying is one solution to our aliasing problems

* Another solution is immutability

— Make it so nobody can ever change an object or any other
objects it can refer to (deeply)

— Allows “red arrows”, but immutability makes them harmless

* In Java, a £inal field cannot be updated after an object is
constructed, so helps ensure immutability

— But £inal is a “shallow” idea and we need “deep”
immutability

Fall 2015 CSE373: Data Structures & Algorithms 23

This works

public class Date {
private final int year;
private final String month;
private final String day;

}
public class ToDoItem {

private final Date date;
private final String description;
}
public class ToDoPQ {
void insert (ToDolItem i) {/*no copy-in needed!*/}
ToDoItem getMin () {/*no copy-out needed!*/}

Notes:
 String objects are immutable in Java
 (Using String for month and day is not great style though)

Fall 2015 CSE373: Data Structures & Algorithms 24

This does not work

public class Date {
private final int year;
private String month; // not final
private final String day;

}
public class ToDolItem ({

private final Date date;
private final String description;
}
public class ToDoPQ {
void insert (ToDoItem i) {/*no copy-in*/}
ToDoItem getMin () {/*no copy-out*/}

}

Client could mutate a Date’s month that is in our data structure
* So must do entire deep copy of ToDoItem

Fall 2015 CSE373: Data Structures & Algorithms 25

final /s shallow

public class ToDoItem ({
private final Date date;
private final String description;

 Here, £final means no code can update the year or
description fields after the object is constructed

« So they will always refer to the same Date and String objects

« But what if those objects have their contents change
— Cannot happen with String objects
— For Date objects, depends how we define Date

So £inal is a “shallow” notion, but we can use it “all the way
down” to get deep immutability

Fall 2015 CSE373: Data Structures & Algorithms 26

This works

 When deep-copying, can “stop” when you get to immutable data
— Copying immutable data is wasted work, so poor style

public class Date { // immutable
private final int year;
private final String month;
private final String day;

}
public class ToDolItem ({

private Date date;
private String description;
}
public class ToDoPQ {
ToDoItem getMin () {
int ans = heap[0];
return new ToDolItem(ans.date, // okay!
ans .description) ;

What about this?

public class Date { // immutable

}
public class ToDoItem { // immutable (unlike last slide)

}
public class ToDoPQ {

// a second constructor that uses

// Floyd’s algorithm

void PriorityQueue (ToDoItem[] items) ({
// what copying should we do?

Fall 2015 CSE373: Data Structures & Algorithms 28

What about this?

public class Date { // immutable

}
public class ToDoItem { // immutable (unlike last slide)

}
public class ToDoPQ {

// a second constructor that uses

// Floyd’s algorithm

void PriorityQueue (ToDoItem[] items) ({
// what copying should we do?

Copy the array, but do not copy the ToDoItem or Date objects

Fall 2015 CSE373: Data Structures & Algorithms 29

Homework 5

* You are implementing a graph abstraction

 As provided, Vertex and Edge are immutable
— But Collection<Vertex> and Collection<Edge> are not

* You might choose to add fields to Vertex or Edge that make
them not immutable

— Leads to more copy-in-copy-out, but that’s fine!

« Or you might leave them immutable and keep things like “best-
path-cost-so-far” in another dictionary (e.g., a HashMap)

There is more than one good design, but preserve your abstraction
— Great practice with a key concept in software design

Fall 2015 CSE373: Data Structures & Algorithms 30

