

CSE373: Data Structures & Algorithms Lecture 13: Topological Sort / Graph Traversals

> Kevin Quinn Fall 2015

Topological Sort

Disclaimer: This may be wrong. Don't base your course schedules on this Material. Please...

Problem: Given a DAG G= (V,E), output all vertices in an order such that no vertex appears before another vertex that has an edge to it

One example output:

126, 142, 143, 374, 373, 417, 410, 413, XYZ, 415

Questions and comments

- Why do we perform topological sorts only on DAGs?
 - Because a cycle means there is no correct answer
- Is there always a unique answer?
 - No, there can be 1 or more answers; depends on the graph
 - Graph with 5 topological orders:

Yes, including all lists

Uses

- Figuring out how to graduate
- Computing an order in which to recompute cells in a spreadsheet
- Determining an order to compile files using a Makefile
- In general, taking a dependency graph and finding an order of execution

• ...

A First Algorithm for Topological Sort

- 1. Label ("mark") each vertex with its in-degree
 - Think "write in a field in the vertex"
 - Could also do this via a data structure (e.g., array) on the side
- 2. While there are vertices not yet output:
 - a) Choose a vertex v with labeled with in-degree of 0
 - b) Output **v** and *conceptually* remove it from the graph
 - c) For each vertex **u** adjacent to **v** (i.e. **u** such that (**v**,**u**) in **E**), decrement the in-degree of **u**

Example

Output:

Node: 126 142 143 374 373 410 413 415 417 XYZ

Removed?

In-degree: 0 0 2 1 1 1 1 1 3

Example

Node: 126 142 143 374 373 410 413 415 417 XYZ

Removed? x

In-degree: 0 0 2 1 1 1 1 1 3

CSE 413

CSE 417

Node: 126 142 143 374 373 410 413 415 417 XYZ

Removed? x x

In-degree: 0 0 2 1 1 1 1 1 3

1

Removed? x x x

In-degree: 0 0 2 1 1 1 1 1 3

1 0 0

CSE 417

Example

Removed? x x x x x x In-degree: 0 0 2 1 1 1 1 1 1 1 3 1 3 1 0 0 0 0 0 0 2

CSE 417

Node:	126	142	143	374	373	410	413	415	417	XYZ
Removed?	X	X	X	X	X				X	
In-degree:	0	0	2	1	1	1	1	1	1	3
			1	0	0	0	0	0	0	2
			0							

Node:	126	142	143	374	373	410	413	415	417	XYZ
Removed?	X	X	X	X	X	X			X	
In-degree:	0	0	2	1	1	1	1	1	1	3
			1	0	0	0	0	0	0	2
			0							1

Node:	126	142	143	374	373	410	413	415	417	XYZ
Removed?	X	X	X	X	X	X	X		X	
In-degree:	0	0	2	1	1	1	1	1	1	3
			1	0	0	0	0	0	0	2
			0							1
Fall 2013	CSE373: Data Structures & Algorithms								0	

XYZ

Node:	126	142	143	374	373	410	413	415	417	XYZ
Removed?	X	X	X	X	X	X	X		X	X
In-degree:	0	0	2	1	1	1	1	1	1	3
			1	0	0	0	0	0	0	2
			0							1
Fall 2013			CS	E373: I	Oata Stru	ictures &	& Algori	thms		0

Notice

- Needed a vertex with in-degree 0 to start
 - Will always have at least 1 because no cycles
- Ties among vertices with in-degrees of 0 can be broken arbitrarily
 - Can be more than one correct answer, by definition, depending on the graph

Running time?

```
labelEachVertexWithItsInDegree();
for(ctr=0; ctr < numVertices; ctr++) {
    v = findNewVertexOfDegreeZero();
    put v next in output
    for each w adjacent to v
        w.indegree--;
}</pre>
```

Running time?

```
labelEachVertexWithItsInDegree();
for(ctr=0; ctr < numVertices; ctr++){
    v = findNewVertexOfDegreeZero();
    put v next in output
    for each w adjacent to v
        w.indegree--;
}</pre>
```

- What is the worst-case running time?
 - Initialization O(|V|+|E|) (assuming adjacency list)
 - Sum of all find-new-vertex $O(|V|^2)$ (because each O(|V|))
 - Sum of all decrements O(|E|) (assuming adjacency list)
 - So total is $O(|V|^2)$ not good for a sparse graph!

Doing better

The trick is to avoid searching for a zero-degree node every time!

- Keep the "pending" zero-degree nodes in a list, stack, queue, bag, table, or something
- Order we process them affects output but not correctness or efficiency provided add/remove are both O(1)

Using a queue:

- 1. Label each vertex with its in-degree, enqueue 0-degree nodes
- 2. While queue is not empty
 - a) v = dequeue()
 - b) Output **v** and remove it from the graph
 - c) For each vertex **u** adjacent to **v** (i.e. **u** such that (**v**,**u**) in **E**), decrement the in-degree of **u**, if new degree is 0, enqueue it

Running time?

```
labelAllAndEnqueueZeros();
for(ctr=0; ctr < numVertices; ctr++){
    v = dequeue();
    put v next in output
    for each w adjacent to v {
        w.indegree--;
        if(w.indegree==0)
            enqueue(v);
    }
}</pre>
```

Running time?

```
labelAllAndEnqueueZeros();
for(ctr=0; ctr < numVertices; ctr++){
    v = dequeue();
    put v next in output
    for each w adjacent to v {
        w.indegree--;
        if(w.indegree==0)
            enqueue(v);
    }
}</pre>
```

- What is the worst-case running time?
 - Initialization: O(|V|+|E|) (assuming adjacenty list)
 - Sum of all enqueues and dequeues: O(|V|)
 - Sum of all decrements: O(|E|) (assuming adjacency list)
 - So total is O(|E| + |V|) much better for sparse graph!

Graph Traversals

Next problem: For an arbitrary graph and a starting node **v**, find all nodes *reachable* from **v** (i.e., there exists a path from **v**)

- Possibly "do something" for each node
- Examples: print to output, set a field, etc.
- Subsumed problem: Is an undirected graph connected?
- Related but different problem: Is a directed graph strongly connected?
 - Need cycles back to starting node

Basic idea:

- Keep following nodes
- But "mark" nodes after visiting them, so the traversal terminates and processes each reachable node exactly once

Abstract Idea

```
traverseGraph (Node start) {
   Set pending = emptySet()
   pending.add(start)
   mark start as visited
   while (pending is not empty) {
     next = pending.remove()
     for each node u adjacent to next
        if(u is not marked) {
          mark u
          pending.add(u)
```

Running Time and Options

- Assuming add and remove are O(1), entire traversal is O(|E|)
 - Use an adjacency list representation
- The order we traverse depends entirely on add and remove
 - Popular choice: a stack "depth-first graph search" "DFS"
 - Popular choice: a queue "breadth-first graph search" "BFS"
- DFS and BFS are "big ideas" in computer science
 - Depth: recursively explore one part before going back to the other parts not yet explored
 - Breadth: explore areas closer to the start node first

Example: trees

A tree is a graph and DFS and BFS are particularly easy to "see"


```
DFS(Node start) {
   mark and process start
   for each node u adjacent to start
   if u is not marked
     DFS(u)
}
```

- A, B, D, E, C, F, G, H
- Exactly what we called a "pre-order traversal" for trees
 - The marking is because we support arbitrary graphs and we want to process each node exactly once

Example: trees

A tree is a graph and DFS and BFS are particularly easy to "see"


```
DFS2(Node start) {
  initialize stack s to hold start
  mark start as visited
  while(s is not empty) {
    next = s.pop() // and "process"
    for each node u adjacent to next
      if(u is not marked)
        mark u and push onto s
  }
}
```

- A, C, F, H, G, B, E, D
- A different but perfectly fine traversal

Example: trees

A tree is a graph and DFS and BFS are particularly easy to "see"


```
BFS(Node start) {
   initialize queue q to hold start
   mark start as visited
   while(q is not empty) {
      next = q.dequeue() // and "process"
      for each node u adjacent to next
      if(u is not marked)
        mark u and enqueue onto q
   }
}
```

- A, B, C, D, E, F, G, H
- A "level-order" traversal

Comparison

- Breadth-first always finds shortest paths, i.e., "optimal solutions"
 - Better for "what is the shortest path from x to y"
- But depth-first can use less space in finding a path
 - If longest path in the graph is p and highest out-degree is d
 then DFS stack never has more than d*p elements
 - But a queue for BFS may hold O(|V|) nodes
- A third approach:
 - Iterative deepening (IDFS):
 - Try DFS but disallow recursion more than κ levels deep
 - If that fails, increment K and start the entire search over
 - Like BFS, finds shortest paths. Like DFS, less space.

Saving the Path

- Our graph traversals can answer the reachability question:
 - "Is there a path from node x to node y?"
- But what if we want to actually output the path?
 - Like getting driving directions rather than just knowing it's possible to get there!
- How to do it:
 - Instead of just "marking" a node, store the previous node along the path (when processing u causes us to add v to the search, set v.path field to be u)
 - When you reach the goal, follow path fields back to where you started (and then reverse the answer)
 - If just wanted path length, could put the integer distance at each node instead

Example using BFS

What is a path from Seattle to Tyler

- Remember marked nodes are not re-enqueued
- Note shortest paths may not be unique

