CSE332: Data Structures & Algorithms

Lecture 12: Introduction to Graphs

Kevin Quinn
Fall 2015

Graphs

« A graph is a formalism for representing relationships among items
— Very general definition because very general concept
« Agraphis a pair

Luke
G = (V/E) Q /
— A set of vertices, also known as nodes

V= {vy,vy,.., v}

— A set of edges vV = { , , Luke}
E = {e;,e5,..,8,} E = {(Luke,)/
- Each edge e; is a pair of vertices 2 ’ ; i
(vj y Vi) ’

* An edge “connects” the vertices

» Graphs can be directed or undirected

Fall 2015 CSE373: Data Structures & Algorithms 2

An ADT?

« Can think of graphs as an ADT with operations like
isEdge ((vj y Vi)), addVertex (v

new) rc

« Butitis unclear what the “standard operations” are

* Instead we tend to develop algorithms over graphs and then use
data structures that are efficient for those algorithms

« Many important problems can be solved by:
1. Formulating them in terms of graphs
2. Applying a standard graph algorithm

To make the formulation easy and standard, we have a lot of
standard terminology about graphs

Fall 2015 CSE373: Data Structures & Algorithms 3

Some Graphs

For each, what are the vertices and what are the edges?

Web pages with links
Facebook friends

“Input data” for the “7 degrees of separation from Kevin Bacon
game”

Methods in a program that call each other
Road maps (e.g., Google maps)

Airline routes

Family trees

Course pre-requisites

Wow: Using the same algorithms for diverse problems across so

many domains sounds like “core computer science and
engineering’... cough cough

Undirected Graphs

* In undirected graphs, edges have no specific direction

— Edges are always “two-way”
D

A

e Thus, (u,v) € E implies (v,u) € E
— Only one of these edges needs to be in the set
— The other is implicit, so normalize how you check for it

« Degree of a vertex: number of edges containing that vertex
— Put another way: the number of adjacent vertices

Fall 2015 CSE373: Data Structures & Algorithms

Directed Graphs

* In directed graphs (sometimes called digraphs), edges have a
direction

D A
§ c " Q/\
2 edges here B

B
e Thus, (u,v) € Edoes notimply (v,u) € E.

e Let (u,v) € E meanu — Vv
« Call uthe source and v the destination
« In-degree of a vertex: number of in-bound edges,
l.e., edges where the vertex is the destination
« Out-degree of a vertex: number of out-bound edges
l.e., edges where the vertex is the source

Fall 2015 CSE373: Data Structures & Algorithms

Self-Edges, Connectedness

A self-edge a.k.a. a loop is an edge of the form (u,u)
— Depending on the use/algorithm, a graph may have:
* No self edges
« Some self edges
 All self edges (often therefore implicit, but we will be explicit)

A node can have a degree / in-degree / out-degree of zero

« A graph does not have to be connected
— Even if every node has non-zero degree

Fall 2015 CSE373: Data Structures & Algorithms 7

More Notation

ForagraphG = (V,E) -
« |V]| is the number of vertices (A, B, C, D)
« |E| is the number of edges {(C, B),

— Minimum? 0 (A, B),

— Maximum for undirected? | V| |V+1|/2 € o(|v|?)(B, A)

— Maximum for directed? |v|2-|V| € O(|V]?) (C, D)}

v
E

e If (u,v) € E
— Then v is a neighbor of u, i.e., vis adjacent to u
— Order matters for directed edges
e uis not adjacenttowv unless (v,u) € E

Fall 2015 CSE373: Data Structures & Algorithms 8

Examples again

Which would use directed edges? Which would have self-edges?
Which would be connected? Which could have 0-degree nodes?

« Web pages with links

« Facebook friends

* “Input data” for the Kevin Bacon game
 Methods in a program that call each other
 Road maps (e.g., Google maps)

« Airline routes

 Family trees

» Course pre-requisites

Fall 2015 CSE373: Data Structures & Algorithms 9

Weighted Graphs

* In a weighed graph, each edge has a weight a.k.a. cost
— Typically numeric (most examples use ints)
— Orthogonal to whether graph is directed
— Some graphs allow negative weights; many do not

Clinton 20
Mukilteo
Kingston MO Edmonds

Bainbridge 35 Seattle

Bremerton

Fall 2015 CSE373: Data Structures & Algorithms

10

Examples

What, if anything, might weights represent for each of these?
Do negative weights make sense?

 Web pages with links

« Facebook friends

* “Input data” for the Kevin Bacon game
 Methods in a program that call each other
 Road maps (e.g., Google maps)

« Airline routes

 Family trees

« Course pre-requisites

Fall 2015 CSE373: Data Structures & Algorithms 11

Paths and Cycles

« Anpathis a list of vertices [vy,v,,..,v,] suchthat (v;,v;,;)E
E forall0 = i < n. Say “apathfrom v, tov,”

« Acycle is a path that begins and ends at the same node (vy==v_)

Chicago

-

() Salt Lake City

Seattle

San Francisco
Dallas

Example: [Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]

Fall 2015 CSE373: Data Structures & Algorithms 12

Path Length and Cost

- Path length: Number of edges in a path
- Path cost: Sum of weights of edges in a path

Example where
P= [Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]

Chicago

Seattle

length(P) =5
cost(P) =11.5

Dallas

Fall 2015 CSE373: Data Structures & Algorithms 13

San Francisco

Simple Paths and Cycles

« A simple path repeats no vertices, except the first might be the
last

[Seattle, Salt Lake City, San Francisco, Dallas]
[Seattle, Salt Lake City, San Francisco, Dallas, Seattle]

 Recall, a cycle is a path that ends where it begins
[Seattle, Salt Lake City, San Francisco, Dallas, Seattle]
[Seattle, Salt Lake City, Seattle, Dallas, Seattle]

« Asimple cycle is a cycle and a simple path
[Seattle, Salt Lake City, San Francisco, Dallas, Seattle]

Fall 2015 CSE373: Data Structures & Algorithms

14

Paths and Cycles in Directed Graphs

Example:

O

|s there a path from A to D?

Does the graph contain any cycles?

Fall 2015 CSE373: Data Structures & Algorithms

15

Paths and Cycles in Directed Graphs

Example:

O

Is there a path from Ato D? No

Does the graph contain any cycles? No

Fall 2015 CSE373: Data Structures & Algorithms

16

Undirected-Graph Connectivity

* An undirected graph is connected if for all
pairs of vertices u, v, there exists a path from u to v

e o e

Connected graph Disconnected graph

» An undirected graph is complete, a.k.a. fully connected if for all
pairs of vertices u, v, there exists an edge from u to v

plus self edges

Fall 2015 CSE373: Data Structures & Algorithms 17

Directed-Graph Connectivity

« Adirected graph is strongly connected if
there is a path from every vertex to every
other vertex

« Adirected graph is weakly connected if

there is a path from every vertex to every
other vertex ignoring direction of edges

« A complete a.k.a. fully connected directed
graph has an edge from every vertex to
every other vertex

plus self edges

Fall 2015 CSE373: Data Structures & Algorithms 18

Examples

For undirected graphs: connected?
For directed graphs: strongly connected? weakly connected?

 Web pages with links

« Facebook friends

* “Input data” for the Kevin Bacon game
 Methods in a program that call each other
 Road maps (e.g., Google maps)

« Airline routes

 Family trees

« Course pre-requisites

Fall 2015 CSE373: Data Structures & Algorithms 19

Trees as Graphs

When talking about graphs, Example:
we say a tree is a graph that is:
— Acyclic
— Connected

So all trees are graphs, but not
all graphs are trees

How does this relate to the trees
we know and love?...

Fall 2015 CSE373: Data Structures & Algorithms 20

Rooted Trees

 We are more accustomed to rooted trees where:
— We identify a unique root
— We think of edges as directed: parent to children

» Given a tree, picking a root gives a unique rooted tree
— The tree is just drawn differently and with undirected edges

B
redrawn

@ —)
©

o

Fall 2015 CSE373: Data Structures & Algorithms 21

Rooted Trees

 We are more accustomed to rooted trees where:
— We identify a unique root
— We think of edges are directed: parent to children

» Given a tree, picking a root gives a unique rooted tree
— The tree is just drawn differently and with undirected edges

@ ’ F
®

redrawn H
— ®

B

@)})ED ® ®

Fall 2015 CSE373: Data Structures & Algorithms 22

Directed Acyclic Graphs (DAGs)

« A DAG is a directed graph with no (directed) cycles
— Every rooted directed tree is a DAG
— But not every DAG is a rooted directed tree

»
»

— Every DAG is a directed graph
— But not every directed graph is a DAG

Fall 2015 CSE373: Data Structures & Algorithms

23

Examples

Which of our directed-graph examples do you expect to be a DAG?

« Web pages with links

* “Input data” for the Kevin Bacon game
 Methods in a program that call each other
« Airline routes

 Family trees

» Course pre-requisites

Fall 2015 CSE373: Data Structures & Algorithms 24

Density / Sparsity

« Recall: In an undirected graph, 0 < [E| <|V|?
« Recall: In a directed graph: 0 < |E| < |V/]?
« So for any graph, O([E[+|V]?) is O(|V]?)

* Another fact: If an undirected graph is connected, then |V|-1 < |E]

« Because [E| is often much smaller than its maximum size, we do not
always approximate [E| as O(|V|?)
— This is a correct bound, it just is often not tight
— Ifitis tight, i.e., [E| is ©(|V|?) we say the graph is dense
» More sloppily, dense means “lots of edges”
— If |E| is O(]V|) we say the graph is sparse
» More sloppily, sparse means “most possible edges missing”

Fall 2015 CSE373: Data Structures & Algorithms 25

What is the Data Structure?

« So graphs are really useful for lots of data and questions
— For example, “what’s the lowest-cost path from x to y”

« But we need a data structure that represents graphs

 The “best one” can depend on:
— Properties of the graph (e.g., dense versus sparse)

— The common queries (e.g., “is (u,v) an edge?” versus
“what are the neighbors of node u?”)

 So we’'ll discuss the two standard graph representations
— Adjacency Matrix and Adjacency List
— Different trade-offs, particularly time versus space

Fall 2015 CSE373: Data Structures & Algorithms

26

Adjacency Matrix

« Assign each node a number from 0 to |V| -1
e A |V] X |V]| matrix (i.e., 2-D array) of Booleans (or 1 vs. 0)

— If M is the matrix, then M[u] [v] being true
means there is an edge fromu to v

A B C D

D Al F| T | F | F

A C B| T F | F F
B cl F | T | F | T

D/ F | F | F | F

Fall 2015 CSE373: Data Structures & Algorithms

Adjacency Matrix Properties

* Running time to:

— Get a vertex’s out-edges: O(IVI) A
— Get a vertex’s in-edges: O(|V|)

— Decide if some
— Insert an edge:

— Delete an edge: O(1)

« Space requiremen
— |VJ? bits

» Best for sparse or
— Best for dense

Fall 2015

edge exists: O(1) =
O(1

(1) C

D

ts:

dense graphs?
graphs

CSE373: Data Structures & Algorithms

28

Adjacency Matrix Properties

» How will the adjacency matrix vary for an undirected graph?
— Undirected will be symmetric around the diagonal

« How can we adapt the representation for weighted graphs?
— Instead of a Boolean, store a number in each cell
— Need some value to represent ‘not an edge’

 In some situations, 0 or -1 works A B
A F
B| T F
C F T
Fall 2015 D F F

Adjacency List

« Assign each node a number from 0 to |V| -1

* An array of length | V| in which each entry stores a list of all
adjacent vertices (e.g., linked list)

D
A "B/
A C
B A/
B
C ») >
D /

Fall 2015 CSE373: Data Structures & Algorithms

Adjacency List Properties

B Al /
* Running time to:
— Get all of a vertex’s out-edges: C "D
O(d) where d is out-degree of vertex |

Get all of a vertex’s in-edges:
O(|E|) (but could keep a second adjacency list for this!)
Decide if some edge exists:

O(d) where d is out-degree of source

Insert an edge: O(1) (unless you need to check if it's there)
Delete an edge: O(d) where d is out-degree of source

» Space requirements:

O(IVI+E[)

» Best for dense or sparse graphs?

Fall 2015

Best for sparse graphs, so usually just stick with linked lists
CSE373: Data Structures & Algorithms 31

o~

Undirected Graphs

Adjacency matrices & adjacency lists both do fine for undirected graphs
« Matrix: Can save roughly 2x space

— But may slow down operations in languages with “proper” 2D arrays
(not Java, which has only arrays of arrays)

— How would you “get all neighbors”?
» Lists: Each edge in two lists to support efficient “get all neighbors”

A B C D

Example:
P o A| F & {B]/
A c B| T F B "A| TIC |/
B c| F T F C s D “ Bl /
D| F F T F D yC |/

Fall 2015 CSE373: Data Structures & Algorithms 32

Next...

Okay, we can represent graphs
Now let's implement some useful and non-trivial algorithms

« Topological sort: Given a DAG, order all the vertices so that
every vertex comes before all of its neighbors

« Shortest paths: Find the shortest or lowest-cost path from x to y
— Related: Determine if there even is such a path

Fall 2015 CSE373: Data Structures & Algorithms 33

