CSE373: Data Structures & Algorithms
Lecture 10: Implementing Union-Find

Kevin Quinn
Fall 2015

The plan

Last lecture:

 What are disjoint sets
— And how are they “the same thing” as equivalence relations

* The union-find ADT for disjoint sets

« Applications of union-find

Now:
« Basic implementation of the ADT with “up trees”

« Optimizations that make the implementation much faster

Fall 2015 CSE373: Data Structures & Algorithms

Our goal

« Start with an initial partition of n subsets
— Often 1-element sets, e.qg., {1}, {2}, {3}, ..., {n}

« May have m £ind operations and up to n-1 union operations in
any order
— After n-1 union operations, every £ind returns same 1 set

 If total for all these operations is O(m+n), then amortized O(1)
— We will get very, very close to this
— O(1) worst-case is impossible for £ind and union
* Trivial for one or the other

Fall 2015 CSE373: Data Structures & Algorithms 3

Up-tree data structure

 Tree with:
— No limit on branching factor
— References from children to parent

« Start with forest of 1-node trees
© @ e W 66§ & @

» Possible forest after several unions:
— Will use roots for

O ® O
set names @{ ED
S

Fall 2015 CSE373: Data Structures & Algorithms

Find

find(x):
— Assume we have O(1) access to each node
« Will use an array where index i holds node i
— Start at x and follow parent pointers to root
— Return the root

£ind(6) = 7

Fall 2015 CSE373: Data Structures & Algorithms

Union

union(x,y):
— Assume x and y are roots
* If they are not, just find the roots of their trees
— Assume distinct trees (else do nothing)
— Change root of one to have parent be the root of the other
» Notice no limit on branching factor

union(1,7)

6

Fall 2015 CSE373: Data Structures & Algorithms

Simple implementation

» |f set elements are contiguous numbers (e.g., 1,2,...,n), use an
array of length n called up

— Starting at index 1 on slides
— Put in array index of parent, with O (or -1, etc.) for a root

« Example: 12 3 45 67

1)(2)(3)4)o)(6)(7) wuw|0|0|0|0|0|0]O

 Example:

1 3 7

up |0|1(0|7|7]|5|0

» |f set elements are not contiguous numbers, could have a
separate dictionary to map elements (keys) to numbers (values)

Implement operations

// assumes x in range 1,n
int find(int x) {
while (up[x] !'= 0) {
x = up[x];
}

return x;

// assumes x,y are roots
void union(int x, int y) {

uply] = x;

» Worst-case run-time for union?

 \Worst-case run-time for £ind?

 Worst-case run-time for m £inds and n-1 unions?

Fall 2015

CSE373: Data Structures & Algorithms 8

Implement operations

// assumes x in range 1,n
int find(int x) {
while (up[x] !'= 0) {
x = up[x];
}

return x;

}

// assumes x,y are roots
void union(int x, int y) {
// y = £find(y)
// x = f£ind (x)
up[y] = x;
}

» Worst-case run-time for union?

 \Worst-case run-time for £ind?

 Worst-case run-time for m £inds and n-1 unions?

Fall 2015

O(1) (with our assumption...)
O(n)
O(m *n)

CSE373: Data Structures & Algorithms 9

The plan

Last lecture:

 What are disjoint sets
— And how are they “the same thing” as equivalence relations

* The union-find ADT for disjoint sets

« Applications of union-find

Now:
« Basic implementation of the ADT with “up trees”

« Optimizations that make the implementation much faster

Fall 2015 CSE373: Data Structures & Algorithms

10

Two key optimizations

1. Improve union so it stays O(7) but makes £ind O(log n)
— Som £inds and n-1 unions is O(m log n + n)
— Union-by-size: connect smaller tree to larger tree

2. Improve £ind so it becomes even faster
— Make m £inds and n-1 unions almost O(m + n)
— Path-compression: connect directly to root during finds

Fall 2015 CSE373: Data Structures & Algorithms 11

The bad case to avoid

@ @ @ @ union(2,1)
@ @ @ union(3,2)

/GD @ unic;n(n,n-1)

(2)
Q{ /@ find(1) n steps!!

/@)

@)

of

Fall 2015 CSE373: Data Structures & Algorithms 12

Weighted union

Weighted union:
— Always point the smaller (total # of nodes) tree to the root of

Fall 2015

the larger tree

1] ® 4
(5)
(6)

CSE373: Data Structures & Algorithms

union(1,7)

13

Weighted union

Weighted union:

— Always point the smaller (total # of nodes) tree to the root of
the larger tree

union(1,7)

Fall 2015 CSE373: Data Structures & Algorithms 14

Weighted union

Weighted union:
— Always point the smaller (total # of nodes) tree to the root of

Fall 2015

the larger tree

1] (3

union(1,7)

6‘\

(5 W
(6

CSE373: Data Structures & Algorithms

15

Array implementation

Keep the weight (hnumber of nodes in a second array)
— Or have one array of objects with two fields

2 1 1 2 345 6 7
0(1]0]7|7]5]0

2 1 4

1 2 3 456 7
/71110|7|/7]/5]0

2 1 6

Fall 2015 CSE373: Data Structures & Algorithms

16

Nifty trick

Actually we do not need a second array...
— Instead of storing O for a root, store negation of weight
— So up value < 0 means a root

1 7
2 1] 1AL 12345 6 7
\ 5 4 up |-2|1|-1]7|7|5|-4
2 /
6
\1 /\ 123456 7
up (7|1 |-1|7|7]5]|-6
2 /‘
6

Fall 2015 CSE373: Data Structures & Algorithms 17

Bad example? Great example...

@ @ @ @ union(2,1)
@ @ @ union(3,2)

6{ /@E} @ unio;-l(n,n-1)

@

Q{ @% £ind(1) constant here

Fall 2015 CSE373: Data Structures & Algorithms 18

General analysis

« Showing that one worst-case example is now good is not a
proof that the worst-case has improved

* So let’s prove:
— union is still O(1) — this is fairly easy to show
— findis now O(log n)

« Claim: If we use weighted-union, an up-tree of height h has at
least 2h nodes

— Proof by induction on h...

Fall 2015 CSE373: Data Structures & Algorithms

19

Exponential number of nodes

P(h)= With weighted-union, up-tree of height h has at least 2N nodes

Proof by induction on h...

 Base case: h = 0: The up-tree has 1 node and 20= 1
* Inductive case: Assume P(h) and show P(h+1)
— A height h+1 tree T has at least one height h child T1
— T1 has at least 2/ nodes by induction
— And T has at least as many nodes not in T1 than in T1
» Else weighted-union would have T
had T point to T1, not T1 pointto T (!!)

— So total number of nodes is at least 2/ + 2/1= 2N1*1

Fall 2015 CSE373: Data Structures & Algorithms

20

— >

The key idea

Intuition behind the proof: No one child can have more than half the

nodes
T

— >

So, as usual, if number of nodes is exponential in height,
then height is logarithmic in number of nodes

So £ind is O(log n)

Fall 2015 CSE373: Data Structures & Algorithms 21

The new worst case

n/2 Weighted Unions

585858838 &

n/4 Weighted Unions

5% 5% % %

Fall 2015 CSE373: Data Structures & Algorithms

22

The new worst case (continued)

After n/2 + n/4 + ...+ 1 Weighted Unions:

RERT

Height grows by 1 a total of 1og n times find

Fall 2015 CSE373: Data Structures & Algorithms 23

What about union-by-height

We could store the height of each root rather than number of
descendants (weight)

« Still guarantees logarithmic worst-case find
— Proof left as an exercise if interested

« But does not work well with our next optimization

— Maintaining height becomes inefficient, but maintaining
weight still easy

Fall 2015 CSE373: Data Structures & Algorithms

24

Two key optimizations

1. Improve union so it stays O(7) but makes £ind O(log n)
— Som £inds and n-1 unions is O(m log n + n)
— Union-by-size: connect smaller tree to larger tree

2. Improve £ind so it becomes even faster

— Make m £inds and n-1 unions almost O(m + n)
— Path-compression: connect directly to root during finds

Fall 2015 CSE373: Data Structures & Algorithms 25

Path compression

« Simple idea: As part of a £ind, change each encountered
node’s parent to point directly to root

— Faster future £inds for everything on the path (and their
descendants)

Fall 2015 CSE373: Data Structures & Algorithms 26

Solution

(good exampleof psuedocode!)

// performs path compression
find (1)
// find root
r =1
while up[r] > 0
r = up[r]

// compress path
if 1 == r
return r

old parent = up[i]
while (old parent !'= r)
up[i] = r
i = old parent
old parent = up[i]

return r

Fall 2015 CSE373: Data Structures & Algorithms 27

So, how fast is it?

A single worst-case £ind could be O(1og n)
— But only if we did a lot of worst-case unions beforehand
— And path compression will make future finds faster

Turns out the amortized worst-case bound is much better than O(1og n)
— We won't prove it — see text if curious
— But we will understand it:
* How it is almost O(1)
» Because total for m £inds and n-1 unions is almost O(m+n)

Fall 2015 CSE373: Data Structures & Algorithms 28

A really slow-growing function

log* (x) is the minimum number of times you need to apply “log
of log of log of” to go from x to a number <= 1

For just about every number we care about, 1log*(x) is 5 (!)
If x <= 269936 then 10g* x <= 5

— log*2 =1

— log* 4 =log* 22 =2

— log* 16 = log* 2% = 3 (log(log(log(16))) = 1)

— log* 65536 = log* 2(@*) =4 (log(log(log(log(65536)))) = 1)
— log* 269936 = =5

Fall 2015 CSE373: Data Structures & Algorithms 29

Wait.... how big?

Just how big is 265536

Well 270 = 1024
220=1048576
230=1073741824
2100 = 1,125x10"°
265536 = pretty big

But its still not technically constant

Fall 2015 CSE373: Data Structures & Algorithms

30

Almost linear

Turns out total time for m £inds and n-1 unions is:
O((m+n)*(log* (m+n))
— Remember, if m+n < 265536 then log* (m+n) <5

At this point, it feels almost silly to mention it, but even that
bound is not tight...

— “Inverse Ackerman’s function” grows even more slowly than
log*
* Inverse because Ackerman’s function grows really fast
* Function also appears in combinatorics and geometry
« For any number you can possibly imagine, itis < 4
— Can replace 1log* with “Inverse Ackerman’s” in bound

Fall 2015 CSE373: Data Structures & Algorithms 31

Theory and terminology

 Because log* or Inverse Ackerman’s grows so incredibly slowly

— For all practical purposes, amortized bound is constant, i.e.,
total cost is linear

— We say “near linear” or “effectively linear”

* Need weighted-union and path-compression for this bound

— Path-compression changes height but not weight, so they
interact well

« As always, asymptotic analysis is separate from “coding it up”

Fall 2015 CSE373: Data Structures & Algorithms 32

