



### CSE373: Data Structures and Algorithms

Lecture 2: Math Review; Algorithm Analysis

Kevin Quinn Fall 2015

## Today

- Finish discussing stacks and queues
- Review math essential to algorithm analysis
  - Proof by induction
  - Powers of 2
  - Binary numbers
  - Exponents and logarithms
- Begin analyzing algorithms
  - Using asymptotic analysis (continue next time)

### Mathematical induction

Suppose P(n) is some predicate (mentioning integer n)

- Example:  $P(n) \ge n/2 + 1$ 

To prove P(n) for all integers  $n \ge n_0$ , it suffices to prove:

- 1.  $P(n_0)$ , called the basis or base case
- 2. If P(k) then P(k+1), called the "induction step" or **inductive case**

#### Why we will care:

To show an algorithm is correct or has a certain running time, no matter how big a data structure or input value is (Our "n" will be the data structure or input size.)

P(n) = "the sum of the first n powers of 2 (starting at 0) is  $2^{n}$  - 1"

**Theorem:** P(n) holds for all  $n \ge 1$ 

**Proof:** By induction on *n* 

- Base case: n = 1:
  - Sum of first power of 2 is  $2^0$ , which equals 1.

For 
$$n = 1$$
:  $2^n - 1 = 1$ .

- Inductive case:
  - **Assumption**: the sum of the first k powers of 2 is  $2^k 1$
  - Show the sum of the first (k + 1) powers of 2 is  $2^{k+1}-1$  using our assumption: Therefore, the sum of the first (k + 1) powers of 2 is:

$$= (2^{k} - 1) + 2^{(k+1)-1}$$

$$= (2^{k} - 1) + 2^{k}$$

$$= 2^{k+1} - 1$$
k+1'th term

Assumption

### Powers of 2

- A bit is 0 or 1 (just two different "letters" or "symbols")
- A sequence of n bits can represent 2<sup>n</sup> distinct things
  - For example, the numbers 0 through 2<sup>n</sup>-1
- 2<sup>10</sup> is 1024 ("about a thousand", kilo in CSE speak)
- 2<sup>20</sup> is "about a million", mega in CSE speak
- 2<sup>30</sup> is "about a billion", giga in CSE speak

Java: an **int** is 32 bits and signed, so "max int" is "about 2 billion"

a **long** is 64 bits and signed, so "max long" is 2<sup>63</sup>-1

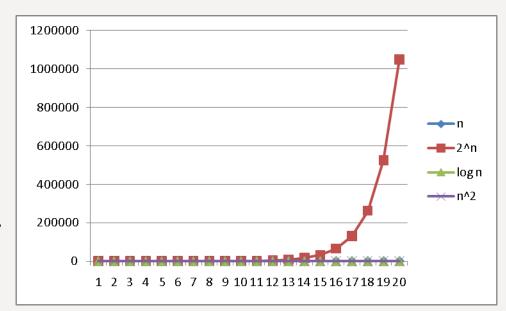
### Therefore...

Could give a unique id to...

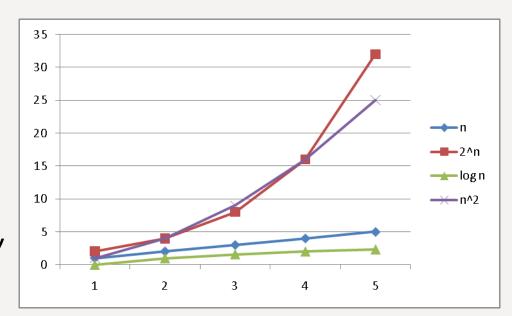
- Every person in the U.S. with 29 bits
- Every person in the world with 33 bits
- Every person to have ever lived with 38 bits (estimate)
- Every atom in the universe with 250-300 bits

So if a password is 128 bits long and randomly generated... how long would it take to crack?

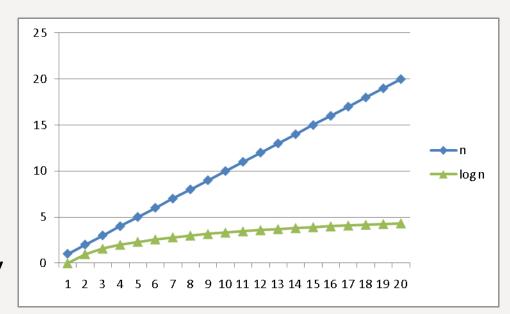
- Since so much is binary log in CS almost always means log<sub>2</sub>
- Definition:  $log_2 x = y$  if  $x = 2^y$
- So, log<sub>2</sub> 1,000,000 = "a
   little under 20"
- Just as exponents grow very quickly, logarithms grow very slowly



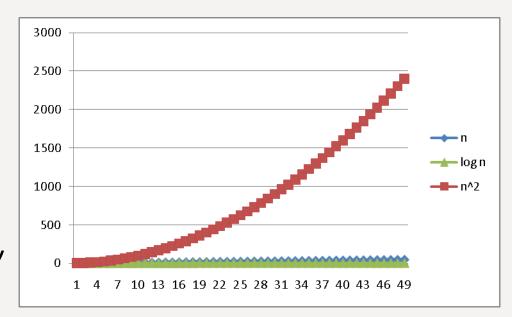
- Since so much is binary log in CS almost always means log<sub>2</sub>
- Definition:  $log_2 x = y$  if  $x = 2^y$
- So, log<sub>2</sub> 1,000,000 = "a
   little under 20"
- Just as exponents grow very quickly, logarithms grow very slowly



- Since so much is binary log in CS almost always means log<sub>2</sub>
- Definition:  $log_2 x = y$  if  $x = 2^y$
- So, log<sub>2</sub> 1,000,000 = "a
   little under 20"
- Just as exponents grow very quickly, logarithms grow very slowly



- Since so much is binary log in CS almost always means log<sub>2</sub>
- Definition:  $log_2 x = y$  if  $x = 2^y$
- So, log<sub>2</sub> 1,000,000 = "a
   little under 20"
- Just as exponents grow very quickly, logarithms grow very slowly



### Properties of logarithms

- log(A\*B) = log(A) + log(B)- So  $log(N^k) = k log(N)$
- log(A/B) = log(A) log(B)
- log log x is written log(log(x))
- log(x) log(x) is written log<sup>2</sup>x
  - It is greater than log(x) for all x > 2
  - It is not the same as log(log(x))

### Log base doesn't matter much!

#### "Any base B log is equivalent to base 2 log within a constant factor"

- And we are about to stop worrying about constant factors!
- In particular,  $log_2(x) \approx 3.22log_{10}(x)$
- In general,

$$\log_{B}(x) = \log_{A}(x) / \log_{A}(B)$$

# Floor and ceiling

$$X$$
 Floor function: the largest integer  $\leq X$ 

$$|2.7| = 2$$

$$|2.7| = 2$$
  $|-2.7| = -3$   $|2| = 2$ 

$$X$$
 Ceiling function: the smallest integer  $\geq X$ 

$$\lceil 2.3 \rceil = 3$$

$$[2.3] = 3$$
  $[-2.3] = -2$   $[2] = 2$ 

# Floor and ceiling properties

$$1. \quad X - 1 < |X| \le X$$

$$2. \quad X \le \lceil X \rceil < X + 1$$

3. 
$$\lfloor n/2 \rfloor + \lfloor n/2 \rfloor = n$$
 if n is an integer

### Algorithm Analysis

As the "size" of an algorithm's input grows (integer, length of array, size of queue, etc.), we analyze:

- How much longer does the algorithm take? (time)
- How much more memory does the algorithm need? (space)

Because the curves we saw are so different, often care about only which curve we resemble

Separate issue: Algorithm correctness – does it produce the right

answer for all input?

-Usually more important

What does this pseudocode return?

```
x := 0;
for i=1 to N do
    for j=1 to i do
        x := x + 3;
return x;
```

• Correctness: For any N ≥ 0, it returns...

What does this pseudocode return?

```
x := 0;
for i=1 to N do
   for j=1 to i do
      x := x + 3;
return x;
```

- Correctness: For any N ≥ 0, it returns 3N(N+1)/2
- Proof: By induction on n
  - P(n) = after outer for-loop executes n times, P(n) holds: 3n(n+1)/2
  - Base case: n=0, returns 0
  - **Inductive case**: Assume P(k) holds for 3k(k+1)/2 after k iterations. Next iteration adds 3(k+1). Show that it hold for (k+1):

```
= 3k(k+1)/2 + 3(k+1)
= (3k(k+1) + 6(k+1))/2
= (k+1)(3k+6)/2
= 3(k+1)(k+2)/2
```

How long does this pseudocode run?

```
x := 0;
for i=1 to N do
    for j=1 to i do
        x := x + 3;
return x;
```

- Running time: For any  $N \ge 0$ ,
  - Assignments, additions, returns take "1 unit time"
  - Loops take the sum of the time for their iterations

Cost of assigning x and returning x

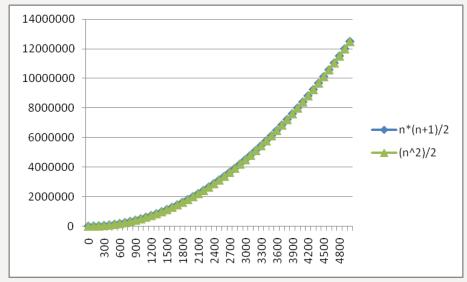
- So: 2 + 2\*(number of times inner loop runs)
  - And how many times is that...

How long does this pseudocode run?

```
x := 0;
for i=1 to N do
   for j=1 to i do
      x := x + 3;
return x;
```

- The total number of loop iterations is N\*(N+1)/2
  - This is a very common loop structure, worth memorizing
  - Proof is by induction on N, known for centuries
  - This is proportional to  $N^2$ , and we say  $O(N^2)$ , "big-Oh of"
    - For large enough N, the N and constant terms are irrelevant, as are the first assignment and return
    - See plot... N\*(N+1)/2 vs. just N<sup>2</sup>/2

### Lower-order terms don't matter

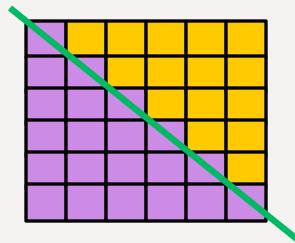




### Geometric interpretation

N  

$$\sum_{i=1}^{N} = N^2/2 + N/2$$
  
i=1  
for i=1 to N do  
for j=1 to i do  
// small work



- Area of square: N<sup>2</sup>
- Area of lower triangle of square: N<sup>2</sup>/2
- Extra area from squares crossing the diagonal: N/2
- As N grows, fraction of "extra area" compared to lower triangle goes to zero (becomes insignificant)

### Big-O: Common Names

```
O(1) constant (same as O(k) for constant k)
O(\log n) logarithmic
O(n) linear
O(n \log n) "n \log n"
O(n^2) quadratic
O(n^3) cubic
O(n^k) polynomial (where is k is any constant > 1)
O(k^n) exponential (where k is any constant > 1)
```

**exponential** does not mean "grows really fast", it means "grows at rate proportional to  $k^n$  for some k > 1"!

- -A savings account accrues interest exponentially(k=1.01?)
- -If you don't know k, you probably don't know it's exponential