CSE373: Data Structures and Algorithms

Lecture 2: Math Review; Algorithm Analysis

Kevin Quinn
Fall 2015

* Finish discussing stacks and queues

* Review math essential to algorithm analysis
— Proof by induction
— Powers of 2
— Binary numbers
— Exponents and logarithms

* Begin analyzing algorithms
— Using asymptotic analysis (continue next time)

Mathematical induction

Suppose P(n) is some predicate (mentioning integer n)
— Example: P(n)>n/2 +1

To prove P(n) for all integers n 2 n,, it suffices to prove:
1. P(n,), called the basis or base case
2. If P(k) then P(k+1), called the “induction step” or inductive case

Why we will care:

To show an algorithm is correct or has a certain running time, no
matter how big a data structure or input value is

(Our “n” will be the data structure or input size.)

Fall 2015 CSE373: Data Structures & Algorithms

Example

P(n) = “the sum of the first n powers of 2 (starting at 0) is 2"- 1”

Theorem: P(n) holds foralln>1

Proof: By induction on n
* Basecase:n=1:
— Sum of first power of 2 is 2°, which equals 1.
Forn=1: 2"-1=1.

* Inductive case:
— Assumption: the sum of the first k powers of 2 is 2k- 1

— Show the sum of the first (k + 1) powers of 2 is 2¥*1 -1 using our assumption:
Therefore, the sum of of the first (k + 1) powers of 2 is:

=(2%- 1) + 20k+1)

=(2k- 1) + 2k k+1’th term
Assumption = Jk+l_1

Fall 2015 CSE373: Data Structures & Algorithms

 AbitisO0or1 (just two different “letters” or “symbols”)

* A sequence of n bits can represent 2" distinct things
— For example, the numbers 0 through 2"-1

e 210451024 (“about a thousand”, kilo in CSE speak)
e 2%0is “about a million”, mega in CSE speak
« 230is “about a billion”, giga in CSE speak

Java: an int is 32 bits and signed, so “max int” is “about
2 billion”

a long is 64 bits and signed, so “max long” is 2°3-1

Therefore...

Could give a unique id to...

* Every person in the U.S. with 29 bits

* Every person in the world with 33 bits

e Every person to have ever lived with 38 bits (estimate)
* Every atom in the universe with 250-300 bits

So if a password is 128 bits long and randomly generated...
how long would it take to crack?

Fall 2015 CSE373: Data Structures & Algorithms

Logarithms and Exponents

Since so much is binary 1og
in CS almost always means
log,

Definition: log, x = yif
x = 2Y

So, 1og, 1,000,000 = “a
little under 20”

Just as exponents grow very
quickly, logarithms grow
very slowly

Fall 2015

1200000

1000000

800000

600000

400000

200000

0 -

12345678 91011121314151617181920

CSE373: Data Structures & Algorithms

Logarithms and Exponents

Since so much is binary 1og
in CS almost always means
log,

Definition: log, x = yif
X = 2Y

So, 1og, 1,000,000 = “a
little under 20”

Just as exponents grow very

quickly, logarithms grow
very slowly

35

30

25

20

15

10

Fall 2015 CSE373: Data Structures & Algorithms 8

Logarithms and Exponents

Since so much is binary 1og
in CS almost always means
log,

Definition: log, x = yif
x = 2Y

So, 1og, 1,000,000 = “a
little under 20”

Just as exponents grow very
quickly, logarithms grow
very slowly

Fall 2015

25

20

15

10

123 456 7 8 91011121314151617 181920

logn

CSE373: Data Structures & Algorithms

Logarithms and Exponents

Since so much is binary 1og
in CS almost always means
log,

Definition: log, x = yif
X = 2Y

So, 1og, 1,000,000 = “a
little under 20”

Just as exponents grow very

quickly, logarithms grow
very slowly

3000

2500

2000

1500

1000

500

0

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

logn

== n"2

Fall 2015 CSE373: Data Structures & Algorithms

10

Properties of logarithms

* log(A*B) = log(A) + log(B)

— So log(N*)= k log(N)

log(A/B) = log(A) - log(B)

* log log x iswritten log(log(x))

* log(x)log(x) is written log?x

Fall 2015

— Itis greater than 1log (x) forallx > 2
— Itis not the same as 1log (log (x))

CSE373: Data Structures & Algorithms

11

Log base doesn’t matter much!

“Any base B log is equivalent to base 2 log within a constant factor”

— And we are about to stop worrying about constant factors!
— In particular, log, (x) = 3.22log,,(x)
— In general,

logz(x) = log,(x) / log,(B)

Fall 2015 CSE373: Data Structures & Algorithms 12

Floor and ceiling

LXJ Floor function: the largest integer < X

27|=2 |-27]=-3 [2]|=2

X-‘ Ceiling function: the smallest integer > X

2.3]=3 [-2.3]=-2 2]=2

Fall 2015 CSE373: Data Structures & Algorithms 13

Fall 2015

Floor and ceiling properties

X-1< _XJSX

2. X=[X]<X+1
3. |n/2|+[n/2]=n ifnisaninteger

CSE373: Data Structures & Algorithms

14

Algorithm Analysis

As the “size” of an algorithm’s input grows (integer, length of array,
size of queue, etc.), we analyze:

- How much longer does the algorithm take? (time)

- How much more memory does the algorithm need? (space)

Because the curves we saw are so different, often care about only
which curve we resemble

Separate issue: Algorithm correctness — does it produce the right

answer for all input? //5orts the given input array of ‘ints’
) public int[] miracleSort(int[] input){
-Usually more important /*for (int i=0:; 1<10000: i++) {
pray
y*/
return input;
Fall 2015 CSE373: D }

Fall 2015

Example

What does this pseudocode return?
x := 0;
for 1=1 to N do
for J=1 to 1 do
X 1= x + 3;
return x;

Correctness: For any N 2 0, it returns...

CSE373: Data Structures & Algorithms

16

Example

What does this pseudocode return?
X = 0;
for 1=1 to N do
for j=1 to 1 do
X 1= X + 3;
return Xx;

Correctness: For any N > 0, it returns 3N(N+1)/2

Proof: By induction on n
— P(n) = after outer for-loop executes n times, P (n) holds: 3n(n+1)/2

— Base case: n=0, returns 0

— Inductive case: Assume P(k) holds for 3k(k+1)/2 after k iterations. Next iteration
adds 3(k+1). Show that it hold for (k + 1):

= 3k(k+1)/2 + 3(k+1)
= (3k(k+1) + 6(k+1))/2
= (k+1)(3k+6)/2

= 3(k+1)(k+2)/2

Fall 2015 CSE373: Data Structures & Algorithms 17

Example

* How long does this pseudocode run?
x := 0;
for 1=1 to N do
for Jj=1 to 1 do
X 1= X + 3;
return Xx;

* Running time: Forany N =20,
— Assignments, additions, returns take “1 unit time”
— Loops take the sum of the time for their iterations

Cost of assigning x and returning x

e So: 2+ 2*(number of times inner loop runs)
— And how many times is that...

Fall 2015 CSE373: Data Structures & Algorithms

18

Example

* How long does this pseudocode run?
x := 0;
for 1i=1 to N do
for j=1 to 1 do
X 1= X + 3;
return x;

* The total number of loop iterations is N*(N+1)/2
— This is a very common loop structure, worth memorizing

— Proof is by induction on N, known for centuries

— This is proportional to N? , and we say O(N?), “big-Oh of”
* For large enough N, the N and constant terms are irrelevant, as are the first
assignment and return

* See plot... N¥(N+1)/2 vs. just N2/2

Fall 2015 CSE373: Data Structures & Algorithms 19

Lower-order terms don’t matter

14000000 . .
relative difference
12000000
0.012
10000000 001
8000000 0.008
*
6000000 #—n*(n+l)/2 0.006
== (n"2)/2 o
4000000 0.004 —=—relative difference
2000000 0.002
0 TTTTTTTTTITTTIT T I T T I I T I T I TITTITITI I Tl 0 TTT T T T T T T T T T T T T I T TrTIIT
[el w] s elelolelNolNe] o o O O O O O O O O O O o o o
o o O oNeoNelNelNoleloeollollollole O O O O O O O oo o o
m O O 0O A T ~NOMWO N W N O O < 0 N W O < ©
NN NMmM N N M st s = 4 N N &N 0N N < T <
Fall 2015 CSE373: Data Structures & Algorithms 20

Geometric interpretation

gi = N2/2+N/2

i=1

for i=1 to N do
for j=1 to 1 do
// small work

e Area of square: N2
e Area of lower triangle of square: N?/2
e Extra area from squares crossing the diagonal: N/2

e As N grows, fraction of “extra area” compared to lower triangle goes
to zero (becomes insignificant)

Fall 2015 CSE373: Data Structures & Algorithms 21

Big-O: Common Names

O(1) constant (same as O(k) for constant k)
O(logn) logarithmic

O(n) linear

O(nlogn) “nlogn”

O(n?) quadratic

O(n3) cubic

O(n¥) polynomial (where is k is any constant > 1)
O(k") exponential (where k is any constant > 1)

exponential does not mean “grows really fast”, it means “grows at
rate proportional to k" for some k> 1"

-A savings account accrues interest exponentially(k=1.017?)
-If you don’t know k, you probably don’t know it’s exponential

Fall 2015 CSE373: Data Structures & Algorithms 22

