
CSE373: Data Structure & Algorithms

Lecture 24: Memory Hierarchy
and Data Locality

Aaron Bauer
Winter 2014

Why memory hierarchy/locality?

•  One of the assumptions that Big-O makes is that all
operations take the same amount of time

•  Is this really true?

Winter 2014 2 CSE373: Data Structures & Algorithms

Where are these
values in memory?

Winter 2014 3 CSE373: Data Structures & Algorithms

int x = 8;
int y = 2 * x;

int[] a = new int[1000];
z = a[0] + a[1] + a[999];

ListNode top = new ListNode(7);
top.next = new ListNode(24);
ListNode temp = top.next;

Ref Loc Value
x 0 8
y 1 16

2 …
…

a[0] 1000
a[1] 1001
… … …
a[999] 1999

…
top 3000 5000

…
val 5000 7
next 5001 7000

…
val 7000 24
next 7001

Definitions

•  A cycle (for our purposes) is the time it takes to
execute a single simple instruction (e.g. adding two
registers together)

•  Memory latency is the time it takes to access memory

Winter 2014 4 CSE373: Data Structures & Algorithms

Winter 2014 5 CSE373: Data Structures & Algorithms

CPU ~16-64+
registers

Time to access:

1 ns per instruction

Cache SRAM

8 KB - 4 MB
2-10 ns

Main Memory

DRAM

2-10 GB
40-100 ns

Disk
many GB

a few
milliseconds

(5-10 million ns)

What does this mean?

•  It is much faster to do: Than:

5 million arithmetic ops 1 disk access

2500 L2 cache accesses 1 disk access

400 main memory accesses 1 disk access
•  Why are computers build this way?

–  Physical realities (speed of light, closeness to CPU)
–  Cost (price per byte of different storage technologies)
–  Under the right circumstances, this kind of hierarchy can

simulate storage with access time of highest (fastest) level
and size of lowest (largest) level

Winter 2014 6 CSE373: Data Structures & Algorithms

Winter 2014 7 CSE373: Data Structures & Algorithms

Processor-Memory Performance Gap

Winter 2014 8 CSE373: Data Structures & Algorithms

What can be done?

•  Goal: attempt to reduce the accesses to slower levels
•  How?

Winter 2014 9 CSE373: Data Structures & Algorithms

So, what can we do?

•  The hardware automatically moves data from main memory into
the caches for you
–  Replacing items already there
–  Algorithms are much faster if “data fits in cache” (often does)

•  Disk accesses are done by software (e.g. ask operating system
to open a file or database to access some records)

•  So most code “just runs,” but sometimes it’s worth designing
algorithms / data structures with knowledge of memory
hierarchy
–  To do this, we need to understand locality

Winter 2014 10 CSE373: Data Structures & Algorithms

Locality

•  Temporal Locality (locality in time)
–  If an item (a location in memory) is referenced, that same

location will tend to be referenced again soon.

•  Spatial Locality (locality in space)
–  If an item is referenced, items whose addresses are close

by tend to be referenced soon.

Winter 2014 11 CSE373: Data Structures & Algorithms

How does data move up the hierarchy?

•  Moving data up the hierarchy is slow because of latency (think
distance to travel)
–  Since we’re making the trip anyway, might as well carpool

•  Get a block of data in the same time we could get a byte
–  Sends nearby memory because

•  It’s easy
•  Likely to be asked for soon (think fields/arrays)

•  Once a value is in cache, may as well keep it around for a while;
accessed once, a value is more likely to be accesses again in
the near future (as opposed to some random other value)

Winter 2014 12 CSE373: Data Structures & Algorithms

Spatial Locality

Temporal Locality

Cache Facts

•  Every level is a sub-set of the level below

•  Definitions:
–  Cache hit – address requested is in the cache
–  Cache miss – address requested is NOT in the

cache
–  Block or page size – the number of contiguous

bytes moved from disk to memory
–  Cache line size – the number of contiguous bytes

move from memory to cache

Winter 2014 13 CSE373: Data Structures & Algorithms

Examples

x = a + 6

y = a + 5

z = 8 * a

x = a[0] + 6

y = a[1] + 5

z = 8 * a[2]

Winter 2014 14 CSE373: Data Structures & Algorithms

Examples

x = a + 6

y = a + 5

z = 8 * a

x = a[0] + 6

y = a[1] + 5

z = 8 * a[2]

Winter 2014 15 CSE373: Data Structures & Algorithms

miss miss

hit

hit

hit

hit

Examples

x = a + 6

y = a + 5

z = 8 * a

x = a[0] + 6

y = a[1] + 5

z = 8 * a[2]

Winter 2014 16 CSE373: Data Structures & Algorithms

miss miss

hit

hit

hit

hit

temporal
locality

spatial
locality

Locality and Data Structures

•  Which has (at least the potential) for better spatial locality,
arrays or linked lists?

Winter 2014 17 CSE373: Data Structures & Algorithms

1
100

a[0]

2
101

a[1]

3
102

a[2]

4
103

a[3]

5
104

a[4]

6
105

a[5]

7
106

a[6]

cache line size cache line size

Locality and Data Structures

•  Which has (at least the potential) for better spatial locality,
arrays or linked lists?
–  e.g. traversing elements

•  Only miss on first item in a cache line

Winter 2014 18 CSE373: Data Structures & Algorithms

1
100

a[0]

2
101

a[1]

3
102

a[2]

4
103

a[3]

5
104

a[4]

6
105

a[5]

7
106

a[6]

cache line size cache line size

miss miss hit hit hit hit hit

Locality and Data Structures

•  Which has (at least the potential) for better spatial locality,
arrays or linked lists?
–  e.g. traversing elements

Winter 2014 19 CSE373: Data Structures & Algorithms

1
100 101

2
300 301

3
50 51

4
62 63

Locality and Data Structures

•  Which has (at least the potential) for better spatial locality,
arrays or linked lists?
–  e.g. traversing elements

•  Miss on every item (unless more than one randomly happen to
be in the same cache line)

Winter 2014 20 CSE373: Data Structures & Algorithms

miss hit

1
100 101

2
300 301

3
50 51

4
62 63

miss hit miss hit miss hit

Where is the locality?

for (i = 1; i < 100; i++) {
 a = a * 7;
 b = b + x[i];
 c = y[5] + d;
}

Winter 2014 21 CSE373: Data Structures & Algorithms

Where is the locality?

for (i = 1; i < 100; i++) {
 a = a * 7;
 b = b + x[i];
 c = y[5] + d;
}

Winter 2014 22 CSE373: Data Structures & Algorithms

Where is the locality?

for (i = 1; i < 100; i++) {
 a = a * 7;
 b = b + x[i];
 c = y[5] + d;
}

Winter 2014 23 CSE373: Data Structures & Algorithms

Temporal Locality

Where is the locality?

for (i = 1; i < 100; i++) {
 a = a * 7;
 b = b + x[i];
 c = y[5] + d;
}

Winter 2014 24 CSE373: Data Structures & Algorithms

Temporal Locality

Spatial Locality

SQL (Structured Query Language)
•  Age: 40 years
•  Developer: ISO
•  Paradigms: declarative
•  Type system: static
•  Used as a database query language

–  Declarative paradigm perfect for this application

•  Using SQL is both easy and very powerful
•  If you have a lot of data, definitely consider using free database

software like MySQL
Winter 2014 25 CSE373: Data Structures & Algorithms

Python
•  Age: 23 years
•  Developer: Python Software Foundation
•  Paradigm: imperative, object-oriented, functional, procedural
•  Type system: dynamic, duck
•  Has a Read-Eval-Print-Loop (REPL)

–  Useful for experimenting or one-off tasks
•  Scripting language

–  Supports “scripts,” small programs run without compilation
•  Often used in web development or scientific/numeric computing
•  Variables don’t have types, only values have types
•  Whitespace has semantic meaning
•  Lack of variable types and compile-time checks mean more may

be required of documentation and testing
•  Python is my language of choice for accomplishing small tasks
Winter 2014 26 CSE373: Data Structures & Algorithms

JavaScript
•  Age: 19 years
•  Developer: Mozilla Foundation
•  Paradigm: imperative, object-oriented, functional, procedural
•  Type system: dynamic, duck
•  Also a scripting language (online/browser REPLs exist)
•  Primary client-side language of the web
•  Does inheritance through prototypes rather than classes

–  Objects inherit by cloning the behavior of existing objects
•  Takes a continue at any cost approach

–  Shared by many web-focused languages (PHP, HTML)
–  Things that would be errors in other languages don’t stop

execution, and are allowed to fail silently
•  JavaScript is nice for simple things, immediately running on the

web is great, but doing larger/more complex software is terrible
Winter 2014 27 CSE373: Data Structures & Algorithms

PHP

•  Age: 19 years
•  Developer: The PHP Group
•  Paradigm: imperative, object-oriented, functional, procedural
•  Type system: dynamic
•  Works with Apache (>50% all websites), so very common

server-side language
•  Minimal type system, lots of strange behavior, just awful
•  I’ve never used it and I never will (hopefully)

Winter 2014 28 CSE373: Data Structures & Algorithms

PHP example

Winter 2014 29 CSE373: Data Structures & Algorithms

$a = md5('240610708');
$b = md5('QNKCDZO');

echo "$a\n";
echo "$b\n";
echo "\n";

var_dump($a == $b);

LOLCODE
•  Age: 7 years
•  An example of an esoteric programming language

Winter 2014 30 CSE373: Data Structures & Algorithms

HAI
 CAN HAS STDIO?
 PLZ OPEN FILE "LOLCATS.TXT"?
 AWSUM THX
 VISIBLE FILE
 O NOES
 INVISIBLE "ERROR!"
 KTHXBYE

HAI
CAN HAS STDIO?
IM IN YR LOOP UPPIN YR VAR TIL BOTH SAEM VAR AN 10
 VISIBLE SUM OF VAR AN 1
IM OUTTA YR LOOP
KTHXBYE

