CSE373: Data Structure & Algorithms

Lecture 24: Memory Hierarchy
and Data Locality

Aaron Bauer
Winter 2014

Why memory hierarchy/locality?

* One of the assumptions that Big-O makes is that all
operations take the same amount of time

* Is this really true?

Winter 2014 CSE373: Data Structures & Algorithms

Where are these
values in memory?

int x = 8;
int y = 2 * x;
int[] a = new int[1000];

z = a[0] + a[l] + a[999];
ListNode top = new ListNode(7) ;

top.next = new ListNode (24) ;
ListNode temp = top.next;

Winter 2014

(

(

Ref Loc Value
X 0 8
y 1 16

2
a[0] 1000
a[1] 1001
a[999] 1999
top 3000 5000
val 5000 7
next 5001 7000
val 7000 24
next 7001

CSE373: Data Structures & Algorithms

Definitions

« A cycle (for our purposes) is the time it takes to

execute a single simple instruction (e.g. adding two
registers together)

« Memory latency is the time it takes to access memory

Winter 2014 CSE373: Data Structures & Algorithms 4

~16-64+ CcPU
registers
SRAM Cache
8 KB -4 MB
Main Memory
DRAM
2-10 GB
Disk
many GB
Winter 2014 CSE373: Data Structures & Algorithms

Time to access:

1 ns per instruction

2-10 ns

40-100 ns

a few
milliseconds

(5-10 million ns)

5

What does this mean?

e Itis much faster to do:
5 million arithmetic ops
2500 L2 cache accesses

400 main memory accesses

Why are computers build this way?

Than:
1 disk access
1 disk access

1 disk access

— Physical realities (speed of light, closeness to CPU)
— Cost (price per byte of different storage technologies)

— Under the right circumstances, this kind of hierarchy can
simulate storage with access time of highest (fastest) level

and size of lowest (largest) level

Winter 2014 CSE373: Data Structures & Algorithms

Microprocessor Transistor Counts 1971-2011 & Moore’s Law

2,600,000,000
1,000,000,000

100,000,000

% 10,000,000
(@)
&)
S
1)

B 1,000,000
c
©
|_

100,000

10,000

2,300 -

Winter 2014

16-Core SPARC T3

Six-Core Core i7,
Six-Core Xeon 7400

@10-Core Xeon Westmere-EX

Dual-Core ltanium 2@~ ® £-&oore POWERY
uad-core z
AMD K1 0\ FQuad-Core ltanium Tukwila
POWERG @ 8-Core Xeon Nehalem-EX
Itanium 2 with 9MB cache @ "__ Six-Core Opteron 2400
AMD K10 Core i7 (Quad)
Core 2 Duo
Itanium 2 @ Cell

AMD K8

@Barton ® Atom

Pentium 4

AMD K7
® AMD Ke-lll

curve shows transistor AMD K6
count doubling every pon,entium i
two years
@ AMD K5
Pentium
[| T T
1971 1980 1990 2000

Date of introduction
CSE373: Data Structures & Algorithms

|
2011

Processor-Memory Performance Gap

1 0000

B CPU Frequency 2x Every 2 Years
B DRAM Speeds

1000

100

10
2x Every 6 Years

I

1980 1985 1990 1995 20060 2005

Winter 2014 CSE373: Data Structures & Algorithms

What can be done?

« Goal: attempt to reduce the accesses to slower levels
« How?

Winter 2014 CSE373: Data Structures & Algorithms 9

So, what can we do?

 The hardware automatically moves data from main memory into
the caches for you

— Replacing items already there
— Algorithms are much faster if “data fits in cache” (often does)

» Disk accesses are done by software (e.g. ask operating system
to open a file or database to access some records)

« So most code “just runs,” but sometimes it's worth designing
algorithms / data structures with knowledge of memory
hierarchy

— To do this, we need to understand locality

Winter 2014 CSE373: Data Structures & Algorithms 10

Locality

« Temporal Locality (locality in time)

— If an item (a location in memory) is referenced, that same
location will tend to be referenced again soon.

« Spatial Locality (locality in space)

— |If an item is referenced, items whose addresses are close
by tend to be referenced soon.

Winter 2014 CSE373: Data Structures & Algorithms

11

How does data move up the hierarchy?

« Moving data up the hierarchy is slow because of latency (think
distance to travel)

— Since we’re making the trip anyway, might as well carpool
» Get a block of data in the same time we could get a byte
— Sends nearby memory because
* It's easy
* Likely to be asked for soon (think fields/arrays)

* Once a value is in cache, may as well keep it around for a while;
accessed once, a value is more likely to be accesses again in
the near future (as opposed to some random other value)

Spatial Locality

Temporal Locality

Winter 2014 CSE373: Data Structures & Algorithms 12

Cache Facts

« Every level is a sub-set of the level below

« Definitions:
— Cache hit — address requested is in the cache

— Cache miss — address requested is NOT in the
cache

— Block or page size — the number of contiguous
bytes moved from disk to memory

— Cache line size — the number of contiguous bytes
move from memory to cache

Winter 2014 CSE373: Data Structures & Algorithms 13

Examples

"
Il
)
+
o)

<
Il
)
+
§)

Winter 2014

a[0] + 6

"
Il

a[l] + 5

<
Il

8 * a[2]

N
Il

CSE373: Data Structures & Algorithms

14

Examples

a+ 6 mMss x = a[0] + 6 Mmiss

"
Il

a[l] + 5 hit

y = a + 5 hit Y

8 * a hit Z 8 * a[2] hit

N
Il

Winter 2014 CSE373: Data Structures & Algorithms 15

Examples

X =a+ 6 MsSs x = a[0] + 6 mMmiss

a[l] + 5 hit

y =a + 5 hit Y

z = 8 * a hit z =8 * a[2] hit
temporal spatial
locality locality

Winter 2014 CSE373: Data Structures & Algorithms 16

Locality and Data Structures

* Which has (at least the potential) for better spatial locality,
arrays or linked lists?

100 101 102 103 104 105 106
1123|456 |7
alol a[1] al2] al3] al4] a[5] alf]

cache line size cache line size

Winter 2014 CSE373: Data Structures & Algorithms 17

Locality and Data Structures

* Which has (at least the potential) for better spatial locality,
arrays or linked lists?

— e.g. traversing elements
100 101 102 103 104 105 106

1123|456 |7

al0] a[l1] al2] a[3] al4] a[5] al6]
miss hit hit hit miss hit hit
\ J\ }
cache line size cache line size

* Only miss on first item in a cache line

Winter 2014 CSE373: Data Structures & Algorithms

Locality and Data Structures

* Which has (at least the potential) for better spatial locality,
arrays or linked lists?

— e.g. traversing elements

100 101 300 301 50 51 62 63

OESHESHEST

Winter 2014 CSE373: Data Structures & Algorithms

19

Locality and Data Structures

* Which has (at least the potential) for better spatial locality,
arrays or linked lists?

— e.g. traversing elements

100 101 300 301 50 51 62 63
miss hit miss hit miss hit miss hit

* Miss on every item (unless more than one randomly happen to
be in the same cache line)

Winter 2014 CSE373: Data Structures & Algorithms 20

Where is the locality?

for (1
a
b
C

}

Winter 2014

1; i < 100; i++) {
a * 7;

=b + x[i];

y[5] + d;

CSE373: Data Structures & Algorithms

21

Where is the locality?

for (1
a
b
C

}

Winter 2014

1; i < 100; i++) {
a * 7;

= b + x[1];

y[5] + d;

CSE373: Data Structures & Algorithms

22

Where is the locality?

for (1 = 1; 1 < 100; i++) {
a=a%x717;
b=D>b + x[1i];

v[5] + 4;

Temporal Locality

C

Winter 2014 CSE373: Data Structures & Algorithms 23

Where is the locality?

for (1 = 1; i < 100; i++) {
a=a%*7;
b=>b + x[1i];

y[5] v d;

Temporal Locality

C

Spatial Locality

Winter 2014 CSE373: Data Structures & Algorithms 24

SQL (Structured Query Language)

* Age: 40 years
* Developer: ISO
« Paradigms: declarative
 Type system: static
 Used as a database query language
— Declarative paradigm perfect for this application

UPDATE clause —:UPDAT E cou nt r‘y EXprGISSiO" |
SET clause —:SET pOpulatiOn = OpU]-ation + 1 — statement
WHERE clause —:WHERE name = II USA l, ;

Expression

Predicate

« Using SQL is both easy and very powerful

« If you have a lot of data, definitely consider using free database
software like MySQL

Winter 2014 CSE373: Data Structures & Algorithms 25

Python

Age: 23 years

Developer: Python Software Foundation

Paradigm: imperative, object-oriented, functional, procedural
Type system: dynamic, duck

Has a Read-Eval-Print-Loop (REPL)

— Useful for experimenting or one-off tasks
Scripting language

— Supports “scripts,” small programs run without compilation
Often used in web development or scientific/numeric computing
Variables don'’t have types, only values have types
Whitespace has semantic meaning

Lack of variable types and compile-time checks mean more may
be required of documentation and testing

Python is my language of choice for accomplishing small tasks

Winter 2014 CSE373: Data Structures & Algorithms 26

JavaScript

 Age: 19 years
* Developer: Mozilla Foundation
« Paradigm: imperative, object-oriented, functional, procedural
 Type system: dynamic, duck
» Also a scripting language (online/browser REPLs exist)
« Primary client-side language of the web
* Does inheritance through prototypes rather than classes
— Objects inherit by cloning the behavior of existing objects
« Takes a continue at any cost approach
— Shared by many web-focused languages (PHP, HTML)

— Things that would be errors in other languages don’t stop
execution, and are allowed to fail silently

JavaScript is nice for simple things, immediately running on the
web is great, but doing larger/more complex software is terrible

Winter 2014 CSE373: Data Structures & Algorithms 27

PHP

 Age: 19 years

« Developer: The PHP Group

« Paradigm: imperative, object-oriented, functional, procedural

 Type system: dynamic

* Works with Apache (>50% all websites), so very common
server-side language

* Minimal type system, lots of strange behavior, just awful

* [|'ve never used it and | never will (hopefully)

Winter 2014 CSE373: Data Structures & Algorithms 28

PHP example

Sa = md5('240610708"') ;
Sb = md5 ('QNKCDZO') ;
echo "$a\n";

echo "$b\n";

echo "\n";

var dump ($a == $b);

Winter 2014 CSE373: Data Structures & Algorithms

29

LOLCODE

 Age: 7 years
« An example of an esoteric programming language

HAT
CAN HAS STDIO?
PLZ OPEN FILE "LOLCATS.TXT"?

AWSUM THX
VISIBLE FILE
O NOES
INVISIBLE "ERROR!"
KTHXBYE

HAT

CAN HAS STDIO?

IM IN YR LOOP UPPIN YR VAR TIL BOTH SAEM VAR AN 10
VISIBLE SUM OF VAR AN 1

IM OUTTA YR LOOP

KTHXBYE

Winter 2014 CSE373: Data Structures & Algorithms

30

