CSE373: Data Structures & Algorithms

Lecture 18: Network Flow,
NP-Completeness, and More

Aaron Bauer
Winter 2014

Pseudocode for Kruskal’s

1. Sort edges by weight (better: put in min-heap)
2. Each node in its own set
3. While output size < |V|-1

— Consider next smallest edge (u,v)

— if £ind (u) and £ind (v) indicate u and v are in different
sets

. output (u,wv)

. union (find(u) ,find(v))

Recall invariant:
u and v in same set if and only if connected in output-so-far

Winter 2014 CSE373: Data Structures & Algorithms

Edges in sorted order:

1. (A,D), (C,D), (B,E), (D,E)
(A,B), (C,F), (A,C)
(E.G)

(D,G), (B,D)
(D,F)

2:
3:
5:
6:
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F), (E,G)

Note: At each step, the union/find sets are the trees in the forest

Winter 2014 CSE373: Data Structures & Algorithms

Correctness

Kruskal's algorithm is clever, simple, and efficient
— But does it generate a minimum spanning tree?
— How can we prove it?

First: it generates a spanning tree

— Intuition: Graph started connected and we added every edge
that did not create a cycle

— Proof by contradiction: Suppose u and v are disconnected in
Kruskal’s result. Then there’s a path from u to v in the initial
graph with an edge we could add without creating a cycle.
But Kruskal would have added that edge. Contradiction.

Second: There is no spanning tree with lower total cost...

Winter 2014 CSE373: Data Structures & Algorithms 4

The inductive proof set-up

Let F (stands for “forest”) be the set of edges Kruskal’'s has added
at some point during its execution.

Claim: F is a subset of one or more MSTs for the graph
— Therefore, once |F|=|V|-1, we have an MST

Proof: By induction on |F|

Base case: |F|=0: The empty set is a subset of all MSTs

Inductive case: |F|=k+1: By induction, before adding the (k+1)®
edge (call it e), there was some MST T such that F-{e} C T ...

Winter 2014 CSE373: Data Structures & Algorithms

Staying a subset of some MST

Claim: F is a subset of one or
more MSTs for the graph

Sofar. F-{e}CT:

Two disjoint cases:

« If{e}C T: Then F C T and we're done

» Else e forms a cycle with some simple path (callitp)in T
— Must be since T is a spanning tree

Winter 2014 CSE373: Data Structures & Algorithms 6

Staying a subset of some MST
Claim: F is a subset of one or /

more MSTs for the graph

Sofar. F-{e}CTand
e formsacyclewithpCT \

 There must be an edge e2 on p such that e2 is not in F
— Else Kruskal would not have added e

« Claim: e2.weight == e.weight

Winter 2014 CSE373: Data Structures & Algorithms 7

Staying a subset of some MST
Claim: F is a subset of one or /

more MSTs for the graph

Sofar. F-{e}CT
eformsacyclewithpCT
e2onpisnotinF \

« Claim: e2.weight == e.weight
— If e2.weight > e.weight, then T is not an MST because
T-{e2}+{e} is a spanning tree with lower cost: contradiction
— If e2.weight < e.weight, then Kruskal would have already
considered e2. It would have added it since T has no cycles
and F-{e} C T. Bute2is notin F: contradiction

Winter 2014 CSE373: Data Structures & Algorithms 8

Staying a subset of some MST
Claim: F is a subset of one or /

more MSTs for the graph

Sofar. F-{e}CT

eformsacyclewithpCT
e2onpisnotinF \\\\\\\\\

e2.weight == e.weight

 Claim: T-{e2}+{e}is an MST
— Itis a spanning tree because p-{e2}+{e} connects the same
nodes as p
— It is minimal because its cost equals cost of T, an MST
 Since F C T-{e2}+{e}, F is a subset of one or more MSTs
Done

Winter 2014 CSE373: Data Structures & Algorithms 9

Network Flow

» Adirected graph G= (V,E) with capacities on the edges
— ¢(u,v) is the capacity of edge (u,v)
— Capacities could represent amount of water, traffic, etc.

* “Flow” passes through the graph from s to t /@\

— The maximum that can pass along an edge

is its capacity .

4
— Flow must be conserved (same amount (g - 1 - b
must leave a node that enters it)
« The Maximum Flow Problem 4\ 2
!
3

2
Determine the maximum flow :l

that can pass from s to t
3

\®/

Winter 2014 CSE373: Data Structures & Algorithms 10

Motivation

 Many networks have “flow” going across them
— Water
— Electricity
— Transportation
« Energy and Nutrients flow between organisms
* Related problems:
— Multi-commodity flow
— Minimum cost flow
— Circulation

Winter 2014 CSE373: Data Structures & Algorithms

Will Greedy Work?

Winter 2014

pON

4 2

/
\f
y

R

O

CSE373: Data Structures & Algorithms

No!

12

Ford-Fulkerson: Idea

Repeatedly identify paths from s to t

— Called augmenting paths

« Send as much flow as possible down the path

« Stop when there are no more paths to be found

* Amount of flow entering t is the maximum flow

 We will need to construct two additional graphs F and R
— F will represent the current flow (initially 0)

— R (called the residual graph) will show, for each edge, how
much more flow can be added

 Calculated by subtracting current flow from capacity
« Edges called residual edges

Winter 2014 CSE373: Data Structures & Algorithms 13

Winter 2014

0 0.

* \\
G ol
0 0. 0
v Ty
() ()

CSE373: Data Structures & Algorithms

14

Example 1

Winter 2014

0’ 2,
Vs "
O O
4 ,
0 . 2
v Sy
@ ‘@
" 5

CSE373: Data Structures & Algorithms

Example 1

Winter 2014

2 2.

* \\
g ooow
2 0.)
v Ty
) O

CSE373: Data Structures & Algorithms

16

Example 1

Winter 2014

CSE373: Data Structures & Algorithms

17

Example 2

Winter 2014

0 0.

* \\
G ol
0 0. 0
v Ty
() (@

CSE373: Data Structures & Algorithms

18

Example 2

Winter 2014

3 0.

* \\
G ol
0 3. 0
v Ty
() (@

CSE373: Data Structures & Algorithms

19

Let the Algorithm Change lts Mind

Winter 2014 CSE373: Data Structures & Algorithms

20

Let the Algorithm Change lts Mind

Winter 2014 CSE373: Data Structures & Algorithms

Correctness

* Termination

— As long as the edge capacities are integers the algorithm will
terminate

— Each augmenting path increases the flow by at least 1

» Since we continue until the residual graph has no s-t paths
remaining, max flow is guaranteed to be found

Winter 2014 CSE373: Data Structures & Algorithms 22

Complexity

« An augmenting path can be found in O(|E|) by the unweighted
shortest path algorithm

« Each augmenting path increases the flow by at least 1
« Hence, in the worst case, for a max flow of f, the worst-case
asymptotic running time is O(f*|E|)
— A variation on Dijkstra’s algorithm to choose the largest
capacity augmenting path can improve this

Winter 2014 CSE373: Data Structures & Algorithms 23

Timing

Prefer timing a sequence of instructions
Prefer large and spread out values of n
Beware of initial timings
When timing sequence
— For O(log n) operations

a sequence of m take O(m*log n)
— Divide by m to get per-instruction time

Winter 2014 CSE373: Data Structures & Algorithms

24

Some problems are harder than others

Euler circuit (path touching every edge once)
— linear time
« Hamiltonian cycle (simple cycle containing every vertex)
— no known linear time algorithm
« Single-source unweighted shortest path
— BFS solves it in linear time
« Single-source unweighted longest path
— no known linear algorithm
* In fact, no known polynomial algorithms for variants
— best known algorithms are exponential in worst case
— belong to a class of problems called NP-complete

Winter 2014 CSE373: Data Structures & Algorithms

25

Polynomial Time

Binary Search

Dijkstra’s Algorithm

Breadth-First Search

Sorting Algorithms

Winter 2014 CSE373: Data Structures & Algorithms

26

Nondeterministic Polynomial Time

NP

Hamiltonian Cycle

Traveling Salesperson

Binary Search

3-Colorability

Dijkstra’s Algorithm
Breadth-First Search

Sorting Algorithms

Winter 2014 CSE373: Data Structures & Algorithms

27

What does NP mean?

* Any problem “in NP” can be solved in polynomial time
by a nondeterministic algorithm

— A deterministic algorithm must choose one path when
presented with a choice

— A nondeterministic algorithm can choose multiple paths

* Any problem “in NP” is one whose solution is verifiable in
polynomial time

— |If the solution to a problem is fast to verify, we can
nondeterministically try all possible solutions quickly

« A problem is NP-complete if it's as hard to solve as any other
problem in NP

Winter 2014 CSE373: Data Structures & Algorithms

28

P vs NP

* It's currently unknown whether there exist polynomial time
algorithms for NP-complete problems

— That is, does P = NP?
— People generally believe P # NP, but no proof yet
» One of the major open questions in computer science

— Travelling Salesman (2012 film)
— Episode of Elementary (CBS)

TRAVELLING SALESMAN

Winter 2014 CSE373: Data Structures & Algorithms 29

Some problems are impossible

 Why doesn’t the Java compiler have an infinite loop checker?
— It would be very useful
— Industry would definitely pay for it
« Let's say we create such a program and call it H
— H takes a program P and some input x
— H(P,x) returns true if P(x) returns true
— H(P,x) returns false if P(x) does not return true
 Now we create a program D that uses H as a subroutine
— D takes a program P and returns the opposite of H(P,P)
— D(P) returns true if P(P) does not return true
— D(P) returns false if P(P) returns true

Winter 2014 CSE373: Data Structures & Algorithms

30

Halting Problem

What happens if we run D on itself?
— D(D) returns true if D(D) does not return true
— D(D) returns false if D(D) returns true
— Contradiction!
It turns out a program such as H is not possible :(
Known as the Halting Problem
— One example of an undecidable problem
Classic part of CS theory
— Originally proved by Alan Turing

Winter 2014 CSE373: Data Structures & Algorithms 31

Algorithm Design Techniques

Greedy
— Shortest path, minimum spanning tree, ...
Divide and Conquer

— Divide the problem into smaller subproblems,
solve them, and combine into the overall solution

— Often done recursively
— WEe'll see examples when we get to sorting
Dynamic Programming

— Brute force through all possible solutions, storing solutions to
subproblems to avoid repeat computation

Backtracking
— A clever form of exhaustive search

Winter 2014 CSE373: Data Structures & Algorithms 32

Dynamic Programming: ldea

* Divide problem into many subproblems

* An individual subproblem may occur many times
— Store the result in a table to enable reuse
— Technique called memoization

» Dijkstra’s does this!

— Breaks the problem of finding all shortest paths into
subproblems of finding paths to increasingly distant nodes

— It finds the shortest path to some intermediate node v
— Stores this path for use in computing other shortest paths

» |f the number of subproblems grows exponentially, a recursive
solution may have an exponential running time

— We can use dynamic programming to help with this

Winter 2014 CSE373: Data Structures & Algorithms 33

Fibonacci Sequence: Recursive

* Fibonacci sequence
- 1,12, 3,5,8,13, ...
* Recursive solution:
fib(int n) {
if (n == |l n == 2) {
return 1

}
return fib(n - 2) + fib(n - 1)

}

« Exponential running time!
— A lot of repeated computation

Winter 2014 CSE373: Data Structures & Algorithms

34

Repeated computation

e

f(3) f(4) f(5)
TN TN
f(1) f(2) f(2) f(3)

Winter 2014 CSE373: Data Structures & Algorithms 35

Fibonacci Sequence: memoized

fib(int n) {
Map results = new Map()
results.put(l, 1)
results.put(2, 1)
return fibHelper (n, results)

}
fibHelper (int n, Map results) ({

if ('results.contains(n)) {
results.put(n, fibHelper (n-2)+fibHelper (n-1))

}

return results.get (n)

}

Now each call of £ib (x) only gets computed once for each x!

Winter 2014 CSE373: Data Structures & Algorithms

36

Spellcheck

 When your spellchecker suggests a word, how does it know
what word to suggest?

— May involve statistics about word frequency, context, etc.
— Almost certainly includes edit distance

 Edit distance is the number of “edits” it takes to turn a word w1
into a word w2

— Edits are insertions, deletions, and substitutions

Winter 2014 CSE373: Data Structures & Algorithms

37

Randomized Algorithms

« Randomized algorithms (or data structures) rely on some source
of randomness

— Usually a random number generator (RNG)
 True randomness is impossible on a computer

— We will make do with pseudorandom numbers
« Suppose we only need to flip a coin

— Can we use the lowest it on the system clock?

— Does not work well for a sequence of numbers
« Simple method: linear congruential generator

— Generate a pseudorandom sequence X;,Xy,... With

X, =Ax mod M

Winter 2014 CSE373: Data Structures & Algorithms 38

Linear Congruential Generator
X, =Ax, mod M

* Very sensitive to the choice of A and M
— Also need to choose X, (“the seed”)
 ForM=11,A=7,and x, =1, we get

7,5,2,3,10,4,6,9,8,1,7,5,2,...
 Sequence has a period of M — 1
» Choice of M and A should work to maximize the period
« The Java library’s Random uses a slight variation

B
x,., =(Ax, +C) mod 2
« Using A =25,214,903,917, C =13, and B =48
— Returns only the high 32 bits

Winter 2014 CSE373: Data Structures & Algorithms 39

Making sorted linked list better

 We can search a sorted array in O(log n) using binary search
« But no such luck for a sorted linked list
2 8 10 11 13 19 [+ 20 [22 [{423 [+ 29 [{~

 We could, however, add additional links
— Every other node links to the node two ahead of it

J

— 8 H IT H 19 - 22 29
2 10 13 ’ 20 23 ’ -

N

— Go further: every fourth node links to the node four ahead

B

8 1 19 22 29 ||
112 1110 1113 1120 1023 B

N

N

Winter 2014 CSE373: Data Structures & Algorithms 40

To the Logical Conclusion

« Take this idea to the logical conclusion
— Every 2'th node links to the node 2' ahead of it

/

u o 22
8 1 19 20 ||
12 1J10 1113 120 1123 [

/

i

i

— Number of links doubles, but now only log n nodes are
visited in a search!

— Problem: insert may require completely redoing links
« Define a level k node as a node with k links

— We require that the th link in any level k node links to the
next node with at least j levels

Winter 2014 CSE373: Data Structures & Algorithms 41

Skip List

« Now what does insert look like?
— Note that in the list with links to nodes 2' ahead, about 1/2

the nodes are level 1, about a quarter are level 2, ...

— In general, about 1/2" are level i

« \When we insert, we’ll choose the level of the new node
randomly according to this probability

— Flip a coin until it comes up heads, the number of flips is the

level

2

10

11

13

E

19

20

22

23

29

L

L

« Operations have expected worst-case running time of O(log n)

Winter 2014

CSE373: Data Structures & Algorithms

42

Backtracking

e Minimax

Winter 2014

CSE373: Data Structures & Algorithms

43

