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Amortized  

•  Recall our plain-old stack implemented as an array that doubles its 
size if it runs out of room 
–  How can we claim push is O(1) time if resizing is O(n) time? 
–  We can’t, but we can claim it’s an O(1) amortized operation 

•  What does amortized mean? 
•  When are amortized bounds good enough? 
•  How can we prove an amortized bound? 

Will just do two simple examples  
–  Text has more sophisticated examples and proof techniques 
–  Idea of how amortized describes average cost is essential 
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Amortized Complexity 

If a sequence of M operations takes O(M  f(n)) time,  
we say the amortized runtime is O(f(n)) 

 

Amortized bound: worst-case guarantee over sequences of operations 
–  Example: If any n operations take O(n), then amortized O(1) 
–  Example: If any n operations take O(n3), then amortized O(n2) 

 
•  The worst case time per operation can be larger than f(n) 

–  As long as the worst case is always “rare enough” in any 
sequence of operations 

Amortized guarantee ensures the average time per operation for any 
sequence is O(f(n)) 
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“Building Up Credit” 

•  Can think of preceding “cheap” operations as building up “credit” 
that can be used to “pay for” later “expensive” operations 

•  Because any sequence of operations must be under the bound, 
enough “cheap” operations must come first 
–  Else a prefix of the sequence, which is also a sequence, 

would violate the bound 

Winter 2014 4 CSE373: Data Structures & Algorithms 



Example #1: Resizing stack 

A stack implemented with an array where we double the size of the 
array if it becomes full 

Claim: Any sequence of push/pop/isEmpty is amortized O(1) 
 
Need to show any sequence of M operations takes time O(M) 

–  Recall the non-resizing work is O(M) (i.e., M*O(1)) 
–  The resizing work is proportional to the total number of element 

copies we do for the resizing 
–  So it suffices to show that: 

 After M operations, we have done < 2M total element copies 
    (So average number of copies per operation is bounded by a 

constant) 
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Amount of copying 

After  M operations, we have done  < 2M  total element copies 
 

Let n be the size of the array after M operations 
–  Then we have done a total of: 

 n/2 + n/4 + n/8 + … INITIAL_SIZE < n 
 element copies 

–  Because we must have done at least enough push 
operations to cause resizing up to size n: 

 M ≥ n/2 
–  So 

2M ≥ n > number of element copies 
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Other approaches 

•  If array grows by a constant amount (say 1000),  
 operations are not amortized O(1) 

–  After O(M) operations, you may have done Θ(M2) copies 

•  If array shrinks when 1/2 empty,  
 operations are not amortized O(1) 

–  Terrible case: pop once and shrink, push once and grow, pop 
once and shrink, … 

•  If array shrinks when 3/4 empty,  
 it is amortized O(1) 

–  Proof is more complicated, but basic idea remains: by the time 
an expensive operation occurs, many cheap ones occurred 
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Example #2: Queue with two stacks 
A clever and simple queue implementation using only stacks 
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class Queue<E> { 
  Stack<E> in  = new Stack<E>(); 
  Stack<E> out = new Stack<E>(); 
  void enqueue(E x){ in.push(x); } 
  E dequeue(){ 
    if(out.isEmpty()) { 
      while(!in.isEmpty()) { 
        out.push(in.pop()); 
      } 
    } 
    return out.pop(); 
  } 
} 
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enqueue: A, B, C 



Example #2: Queue with two stacks 
A clever and simple queue implementation using only stacks 
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class Queue<E> { 
  Stack<E> in  = new Stack<E>(); 
  Stack<E> out = new Stack<E>(); 
  void enqueue(E x){ in.push(x); } 
  E dequeue(){ 
    if(out.isEmpty()) { 
      while(!in.isEmpty()) { 
        out.push(in.pop()); 
      } 
    } 
    return out.pop(); 
  } 
} 
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Example #2: Queue with two stacks 
A clever and simple queue implementation using only stacks 
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class Queue<E> { 
  Stack<E> in  = new Stack<E>(); 
  Stack<E> out = new Stack<E>(); 
  void enqueue(E x){ in.push(x); } 
  E dequeue(){ 
    if(out.isEmpty()) { 
      while(!in.isEmpty()) { 
        out.push(in.pop()); 
      } 
    } 
    return out.pop(); 
  } 
} 
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Example #2: Queue with two stacks 
A clever and simple queue implementation using only stacks 
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class Queue<E> { 
  Stack<E> in  = new Stack<E>(); 
  Stack<E> out = new Stack<E>(); 
  void enqueue(E x){ in.push(x); } 
  E dequeue(){ 
    if(out.isEmpty()) { 
      while(!in.isEmpty()) { 
        out.push(in.pop()); 
      } 
    } 
    return out.pop(); 
  } 
} 
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Example #2: Queue with two stacks 
A clever and simple queue implementation using only stacks 
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class Queue<E> { 
  Stack<E> in  = new Stack<E>(); 
  Stack<E> out = new Stack<E>(); 
  void enqueue(E x){ in.push(x); } 
  E dequeue(){ 
    if(out.isEmpty()) { 
      while(!in.isEmpty()) { 
        out.push(in.pop()); 
      } 
    } 
    return out.pop(); 
  } 
} 
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Correctness and usefulness 

•  If x is enqueued before y, then x will be popped from in later 
than y and therefore popped from out sooner than y 
–  So it is a queue 

•  Example:  
–  Wouldn’t it be nice to have a queue of t-shirts to wear 

instead of a stack (like in your dresser)? 
–  So have two stacks 

•  in: stack of t-shirts go after you wash them 
•  out: stack of t-shirts to wear 
•  if out is empty, reverse in into out 
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Analysis 

•  dequeue is not O(1) worst-case because out might be empty 
and in may have lots of items 

•  But if the stack operations are (amortized) O(1), then any 
sequence of queue operations is amortized O(1) 

–  The total amount of work done per element is 1 push onto 
in, 1 pop off of in, 1 push onto out, 1 pop off of out 

–  When you reverse n elements, there were n earlier O(1) 
enqueue operations to average with 
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Amortized useful? 

•  When the average per operation is all we care about (i.e., sum 
over all operations), amortized is perfectly fine 
–  This is the usual situation 

•  If we need every operation to finish quickly (e.g., in a web 
server), amortized bounds may be too weak 

•  While amortized analysis is about averages, we are averaging 
cost-per-operation on worst-case input 
–  Contrast: Average-case analysis is about averages across 

possible inputs.  Example: if all initial permutations of an 
array are equally likely, then quicksort is O(n log n) on 
average even though on some inputs it is O(n2)) 
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Not always so simple 

•  Proofs for amortized bounds can be much more complicated 

•  Example: Splay trees are dictionaries with amortized O(log n) 
operations 
–  No extra height field like AVL trees 
–  See Chapter 4.5 if curious 

•  For more complicated examples, the proofs need much more 
sophisticated invariants and “potential functions” to describe 
how earlier cheap operations build up “energy” or “money” to 
“pay for” later expensive operations 
–  See Chapter 11 if curious 

•  But complicated proofs have nothing to do with the code! 
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The plan 

•  What are disjoint sets 
–  And how are they “the same thing” as equivalence relations 

•  The union-find ADT for disjoint sets 

•  Applications of union-find 

Next lecture: 
 
•  Basic implementation of the ADT with “up trees” 

•  Optimizations that make the implementation much faster 
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Disjoint sets 

•  A set is a collection of elements (no-repeats)  

•  Two sets are disjoint if they have no elements in common 
–  S1 ∩ S2 = ∅ 

•  Example: {a, e, c} and {d, b} are disjoint 

•  Example: {x, y, z} and {t, u, x} are not disjoint 
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Partitions 
A partition P of a set S is a set of sets {S1,S2,…,Sn} such that 
every element of S is in exactly one Si 

Put another way: 
–  S1 ∪ S2 ∪ . . . ∪ Sk = S 
–  i ≠ j implies Si ∩ Sj = ∅  (sets are disjoint with each other) 

Example: 
–  Let S be {a,b,c,d,e} 
–  One partition: {a}, {d,e}, {b,c} 
–  Another partition: {a,b,c}, ∅, {d}, {e} 
–  A third: {a,b,c,d,e} 
–  Not a partition: {a,b,d}, {c,d,e} 
–  Not a partition of S: {a,b}, {e,c} 
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Binary relations 

•  S x S is the set of all pairs of elements of S  
–  Example: If S = {a,b,c} 
    then S x S = {(a,a),(a,b),(a,c),(b,a),(b,b),(b,c), (c,a),(c,b),(c,c)} 

•  A binary relation R on a set S is any subset of S x S 
–  Write R(x,y) to mean (x,y) is “in the relation” 
–  (Unary, ternary, quaternary, … relations defined similarly) 

•  Examples for S = people-in-this-room 
–  Sitting-next-to-each-other relation 
–  First-sitting-right-of-second relation 
–  Went-to-same-high-school relation 
–  Same-gender-relation 
–  First-is-younger-than-second relation 
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Properties of binary relations 

•  A binary relation R over set S is reflexive means  
R(a,a) for all a in S 

 

•  A binary relation R over set S is symmetric means  
R(a,b) if and only if R(b,a) for all a,b in S 

 

•  A binary relation R over set S is transitive means  
   If R(a,b) and R(b,c) then R(a,c) for all a,b,c in S 

 

•  Examples for S = people-in-this-room 
–  Sitting-next-to-each-other relation 
–  First-sitting-right-of-second relation 
–  Went-to-same-high-school relation 
–  Same-gender-relation 
–  First-is-younger-than-second relation 
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Equivalence relations 

•  A binary relation R is an equivalence relation if R is reflexive, 
symmetric, and transitive 

•  Examples 
–  Same gender 
–  Connected roads in the world 
–  Graduated from same high school?  
–  … 
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Punch-line 

•  Every partition induces an equivalence relation 
•  Every equivalence relation induces a partition 

•  Suppose P={S1,S2,…,Sn} be a partition 
–  Define R(x,y) to mean x and y are in the same Si 

•  R is an equivalence relation 

•  Suppose R is an equivalence relation over S 
–  Consider a set of sets S1,S2,…,Sn where  

(1) x and y are in the same Si if and only if R(x,y) 
(2) Every x is in some Si 
•  This set of sets is a partition 

Winter 2014 23 CSE373: Data Structures & Algorithms 



Example 

•  Let S be {a,b,c,d,e} 

•  One partition: {a,b,c}, {d}, {e} 

•  The corresponding equivalence relation: 

 (a,a), (b,b), (c,c), (a,b), (b,a), (a,c), (c,a), (b,c), (c,b), (d,d), (e,e) 
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The plan 

•  What are disjoint sets 
–  And how are they “the same thing” as equivalence relations 

•  The union-find ADT for disjoint sets 

•  Applications of union-find 

Next lecture: 
 
•  Basic implementation of the ADT with “up trees” 

•  Optimizations that make the implementation much faster 
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The operations 

•  Given an unchanging set S, create an initial partition of a set 
–  Typically each item in its own subset: {a}, {b}, {c}, … 
–  Give each subset a “name” by choosing a representative 

element 

•  Operation find takes an element of S and returns the 
representative element of the subset it is in 

•  Operation union takes two subsets and (permanently) makes 
one larger subset 
–  A different partition with one fewer set 
–  Affects result of subsequent find operations 
–  Choice of representative element up to implementation 
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Example 

•  Let S = {1,2,3,4,5,6,7,8,9} 

•  Let initial partition be (will highlight representative elements red) 
{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9} 

•  union(2,5): 
{1}, {2, 5}, {3}, {4}, {6}, {7}, {8}, {9} 

•  find(4) = 4, find(2) = 2, find(5) = 2 
•  union(4,6), union(2,7) 

{1}, {2, 5, 7}, {3}, {4, 6}, {8}, {9} 
•  find(4) = 6, find(2) = 2, find(5) = 2 
•  union(2,6) 

{1}, {2, 4, 5, 6, 7}, {3}, {8}, {9} 
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No other operations 

•  All that can “happen” is sets get unioned 
–  No “un-union” or “create new set” or … 

•  As always: trade-offs – implementations will exploit this small 
ADT 

•  Surprisingly useful ADT: list of applications after one example 
surprising one 
–  But not as common as dictionaries or priority queues 
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Example application: maze-building 

•  Build a random maze by erasing edges 

–  Possible to get from anywhere to anywhere 
•  Including “start” to “finish” 

–  No loops possible without backtracking 
•  After a “bad turn” have to “undo” 
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Maze building 

Pick start edge and end edge 
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Start 

End 



Repeatedly pick random edges to delete 

One approach: just keep deleting random edges until you can get 
from start to finish 
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Start 

End 



Problems with this approach 

1.  How can you tell when there is a path from start to finish? 
–  We do not really have an algorithm yet 

2.  We have cycles, which a “good” maze avoids 
–  Want one solution and no cycles 
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Start 

End 



Revised approach 
•  Consider edges in random order 

•  But only delete them if they introduce no cycles (how? TBD) 

•  When done, will have one way to get from any place to any 
other place (assuming no backtracking) 

•  Notice the funny-looking tree in red 
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Cells and edges 

•  Let’s number each cell 
–  36 total for 6 x 6 

•  An (internal) edge (x,y) is the line between cells x and y  
–  60 total for 6x6: (1,2), (2,3), …, (1,7), (2,8), … 
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Start 

End 

1 2 3 4 5 6 
7 8 9 10 11 12 

13 14 15 16 17 18 
19 20 21 22 23 24 
25 26 27 28 29 30 
31 32 33 34 35 36 



The trick 

•  Partition the cells into disjoint  sets: “are they connected” 
–  Initially every cell is in its own subset 

•  If an edge would connect two different subsets: 
–  then remove the edge and union the subsets 
–  else leave the edge because removing it makes a cycle 
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End 
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13 14 15 16 17 18 
19 20 21 22 23 24 
25 26 27 28 29 30 
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End 
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The algorithm 

•  P = disjoint sets of connected cells, initially each cell in its own 
1-element set 

•  E = set of edges not yet processed, initially all (internal) edges 
•  M = set of edges kept in maze (initially empty) 
 

while P has more than one set { 
–  Pick a random edge (x,y) to remove from E 
–  u = find(x) 
–  v = find(y) 
–  if u==v 
    then add (x,y) to M // same subset, do not create cycle 
    else union(u,v) // do not put edge in M, connect subsets 

} 
Add remaining members of E to M, then output M as the maze 
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Example step 
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Start 

End 

1 2 3 4 5 6 

7 8 9 10 11 12 

13 14 15 16 17 18 

19 20 21 22 23 24 

25 26 27 28 29 30 

31 32 33 34 35 36 

Pick (8,14) 

P 
{1,2,7,8,9,13,19} 
{3} 
{4} 
{5} 
{6} 
{10} 
{11,17} 
{12} 
{14,20,26,27} 
{15,16,21} 
{18} 
{25} 
{28} 
{31} 
{22,23,24,29,30,32 
  33,34,35,36} 
 



Example step 
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P 
{1,2,7,8,9,13,19} 
{3} 
{4} 
{5} 
{6} 
{10} 
{11,17} 
{12} 
{14,20,26,27} 
{15,16,21} 
{18} 
{25} 
{28} 
{31} 
{22,23,24,29,30,32 
  33,34,35,36} 
 

Find(8) = 7 
Find(14) = 20 

Union(7,20) 

P 
{1,2,7,8,9,13,19,14,20,26,27} 
{3} 
{4} 
{5} 
{6} 
{10} 
{11,17} 
{12} 
{15,16,21} 
{18} 
{25} 
{28} 
{31} 
{22,23,24,29,30,32 
  33,34,35,36} 
 



Add edge to M step 
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P 
{1,2,7,8,9,13,19,14,20,26,27} 
{3} 
{4} 
{5} 
{6} 
{10} 
{11,17} 
{12} 
{15,16,21} 
{18} 
{25} 
{28} 
{31} 
{22,23,24,29,30,32 
  33,34,35,36} 
 

Pick (19,20) 

Start 

End 

1 2 3 4 5 6 

7 8 9 10 11 12 

13 14 15 16 17 18 

19 20 21 22 23 24 

25 26 27 28 29 30 

31 32 33 34 35 36 



At the end 

•  Stop when P has one set 
•  Suppose green edges are already in M and black edges were 

not yet picked 
–  Add all black edges to M 
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Start 

End 

1 2 3 4 5 6 
7 8 9 10 11 12 

13 14 15 16 17 18 
19 20 21 22 23 24 
25 26 27 28 29 30 
31 32 33 34 35 36 

P 
{1,2,3,4,5,6,7,… 36} 



Other applications 

•  Maze-building is: 
–  Cute 
–  Homework 4 J 
–  A surprising use of the union-find ADT 

•  Many other uses (which is why an ADT taught in CSE373): 
–  Road/network/graph connectivity (will see this again) 

•  “connected components” e.g., in social network 
–  Partition an image by connected-pixels-of-similar-color 
–  Type inference in programming languages 

•  Not as common as dictionaries, queues, and stacks, but 
valuable because implementations are very fast, so when 
applicable can provide big improvements 
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