

CSE373: Data Structures & Algorithms

Lecture 5: Dictionary ADTs; Binary Trees

Nicki Dell Spring 2014

Today's Outline

Announcements

- Homework 1 due TODAY at 11pm ☺
- Homework 2 out
 - Due in class Wednesday April 16th at the START of class
 - No late days!

Today's Topics

- Finish Asymptotic Analysis
- Dictionary ADT (a.k.a. Map): associate keys with values
 - Extremely common
- Binary Trees

Summary of Asymptotic Analysis

Analysis can be about:

- The problem or the algorithm (usually algorithm)
- Time or space (usually time)
 - Or power or dollars or ...
- Best-, worst-, or average-case (usually worst)
- Upper-, lower-, or tight-bound (usually upper)
- The most common thing we will do is give an O upper bound to the worst-case running time of an algorithm.

Big-Oh Caveats

- Asymptotic complexity focuses on behavior for large n and is independent of any computer / coding trick
- But you can "abuse" it to be misled about trade-offs
- Example: $n^{1/10}$ vs. $\log n$
 - Asymptotically $n^{1/10}$ grows more quickly
 - But the "cross-over" point is around 5 * 10¹⁷
 - So if you have input size less than 2^{58} , prefer $n^{1/10}$
- For small n, an algorithm with worse asymptotic complexity might be faster
 - If you care about performance for small n then the constant factors can matter

Addendum: Timing vs. Big-Oh Summary

- Big-oh is an essential part of computer science's mathematical foundation
 - Examine the algorithm itself, not the implementation
 - Reason about (even prove) performance as a function of n
- Timing also has its place
 - Compare implementations
 - Focus on data sets you care about (versus worst case)
 - Determine what the constant factors "really are"

Let's take a breath

- So far we've covered
 - Some simple ADTs: stacks, queues, lists
 - Some math (proof by induction)
 - How to analyze algorithms
 - Asymptotic notation (Big-Oh)
- Coming up....
 - Many more ADTs
 - Starting with dictionaries

The Dictionary (a.k.a. Map) ADT

- Data:
 - set of (key, value) pairs
 - keys must be comparable
- Operations:
 - insert(key,value)
 - find(key)
 - delete(key)
 - ..

find(megan)

insert(david, ...

Megan Hopp, ...

Will tend to emphasize the keys; don't forget about the stored values

davidDavid Swanson

OH: Wed 3.30-4.20

• • •

nicholas Nicholas Shahan

OH: Wed 11.30-12.20

• • •

megan Megan Hopp

OH: Mon 10-10.50

• • •

A Modest Few Uses

Any time you want to store information according to some key and be able to retrieve it efficiently

– Lots of programs do that!

Search: inverted indexes, phone directories, ...

Networks: router tables

Operating systems: page tables

Compilers: symbol tables

Databases: dictionaries with other nice properties

Biology: genome maps

• ...

Possibly the most widely used ADT

Simple implementations

For dictionary with *n* key/value pairs

• Unsc	orted linked-list	insert $O(1)^*$	o(n)	delete $O(n)$
• Unsc	orted array	<i>O</i> (1)*	<i>O</i> (n)	<i>O</i> (n)
• Sorte	ed linked list	<i>O</i> (n)	<i>O</i> (n)	<i>O</i> (n)
• Sorte	ed array	O(n)	O(log n)	<i>O</i> (n)

^{*} Unless we need to check for duplicates

We'll see a Binary Search Tree (BST) probably does better but not in the worst case (unless we keep it balanced)

Lazy Deletion

10	12	24	30	41	42	44	45	50
✓	sc	✓	✓	✓	✓	×	√	✓

A general technique for making delete as fast as find:

Instead of actually removing the item just mark it deleted

Plusses:

- Simpler
- Can do removals later in batches
- If re-added soon thereafter, just unmark the deletion

Minuses:

- Extra space for the "is-it-deleted" flag
- Data structure full of deleted nodes wastes space
- May complicate other operations

Better dictionary data structures

There are many good data structures for (large) dictionaries

- 1. Binary trees
- 2. AVL trees
 - Binary search trees with guaranteed balancing
- 3. B-Trees
 - Also always balanced, but different and shallower
 - B-Trees are not the same as Binary Trees
 - B-Trees generally have large branching factor
- 4. Hashtables
 - Not tree-like at all

Skipping: Other balanced trees (e.g., red-black, splay)

Tree terms (review?)

Root (tree) Depth (node)

Leaves (tree) Height (tree)

Children (node) Degree (node)

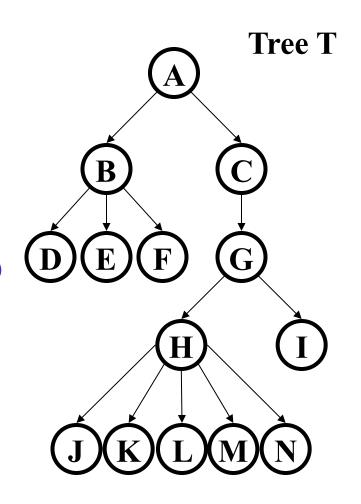
Parent (node) Branching factor (tree)

Siblings (node)

Ancestors (node)

Descendents (node)

Subtree (node)



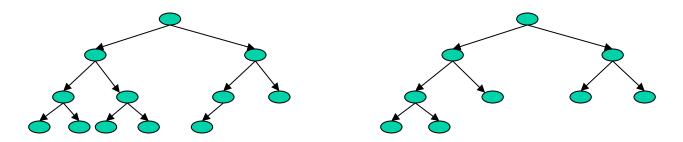
More tree terms

- There are many kinds of trees
 - Every binary tree is a tree
 - Every list is kind of a tree (think of "next" as the one child)
- There are many kinds of binary trees
 - Every binary search tree is a binary tree
 - Later: A binary heap is a different kind of binary tree
- A tree can be balanced or not
 - A balanced tree with n nodes has a height of $O(\log n)$
 - Different tree data structures have different "balance conditions" to achieve this

Kinds of trees

Certain terms define trees with specific structure

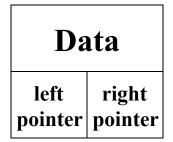
- Binary tree: Each node has at most 2 children (branching factor 2)
- *n*-ary tree: Each node has at most *n* children (branching factor *n*)
- Perfect tree: Each row completely full
- Complete tree: Each row completely full except maybe the bottom row, which is filled from left to right



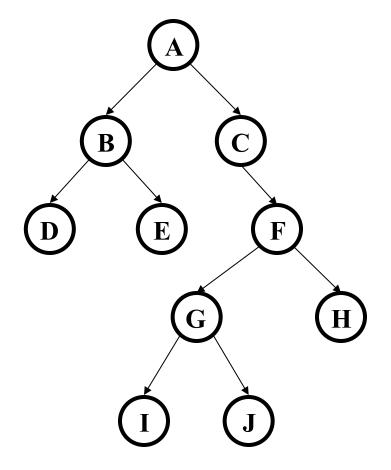
What is the height of a perfect binary tree with n nodes? A complete binary tree?

Binary Trees

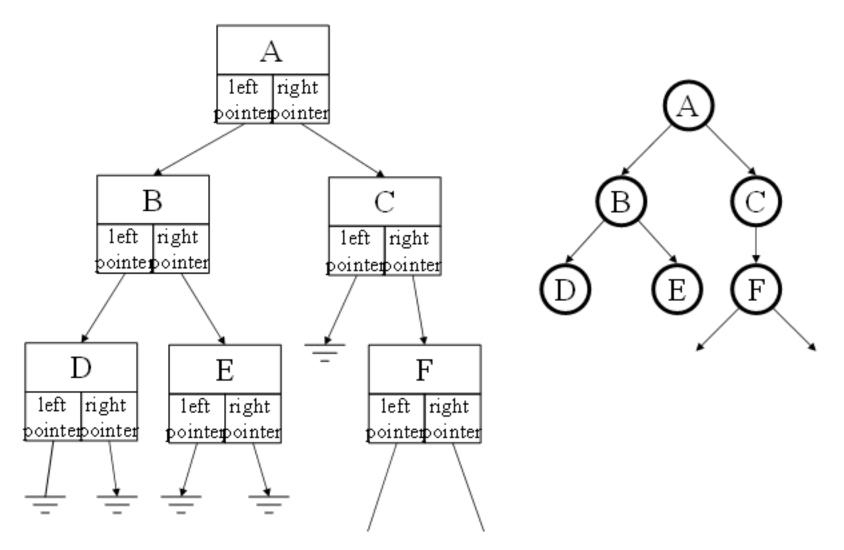
- Binary tree: Each node has at most 2 children (branching factor 2)
- Binary tree is
 - A root (with data)
 - A left subtree (may be empty)
 - A right subtree (may be empty)
- Representation:



 For a dictionary, data will include a key and a value



Binary Tree Representation



Binary Trees: Some Numbers

Recall: height of a tree = longest path from root to leaf (count edges)

For binary tree of height *h*:

– max # of leaves: 2^h

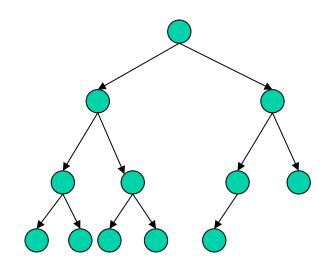
- max # of nodes: $2^{(h+1)} - 1$

– min # of leaves:

– min # of nodes:

h+1

For n nodes, we cannot do better than $O(\log n)$ height and we want to avoid O(n) height



Calculating height

What is the height of a tree with root root?

```
int treeHeight(Node root) {
      ???
}
```

Calculating height

What is the height of a tree with root root?

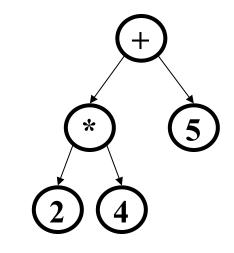
Running time for tree with n nodes: O(n) – single pass over tree

Note: non-recursive is painful – need your own stack of pending nodes; much easier to use recursion's call stack

Tree Traversals

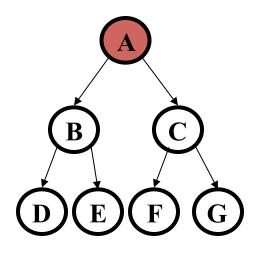
A traversal is an order for visiting all the nodes of a tree

- Pre-order: root, left subtree, right subtree
 + * 2 4 5
- In-order: left subtree, root, right subtree
 2 * 4 + 5
- Post-order: left subtree, right subtree, root
 2 4 * 5 +



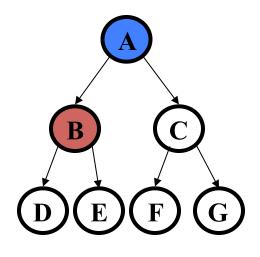
(an expression tree)

```
void inOrderTraversal(Node t) {
   if(t != null) {
     inOrderTraversal(t.left);
     process(t.element);
     inOrderTraversal(t.right);
   }
}
```



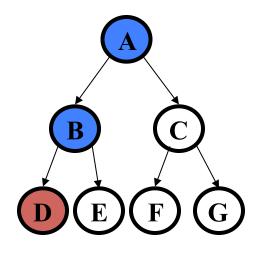
- A = current node A = processing (on the call stack)
- A = completed node ✓ = element has been processed

```
void inOrderTraversal(Node t) {
   if(t != null) {
     inOrderTraversal(t.left);
     process(t.element);
     inOrderTraversal(t.right);
   }
}
```



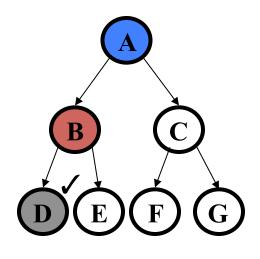
- A = current node A = processing (on the call stack)
- A = completed node ✓ = element has been processed

```
void inOrderTraversal(Node t) {
  if(t != null) {
    inOrderTraversal(t.left);
    process(t.element);
    inOrderTraversal(t.right);
  }
}
```



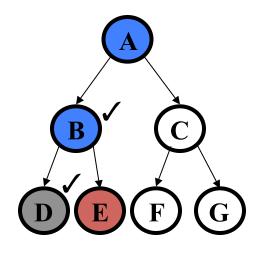
- A = current node A = processing (on the call stack)
- A = completed node ✓ = element has been processed

```
void inOrderTraversal(Node t) {
   if(t != null) {
     inOrderTraversal(t.left);
     process(t.element);
     inOrderTraversal(t.right);
   }
}
```



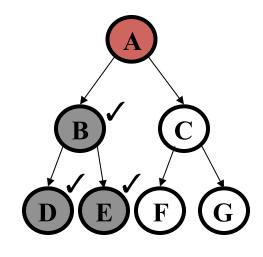
- A = current node A = processing (on the call stack)
- A = completed node ✓ = element has been processed

```
void inOrderTraversal(Node t) {
  if(t != null) {
    inOrderTraversal(t.left);
    process(t.element);
    inOrderTraversal(t.right);
  }
}
```



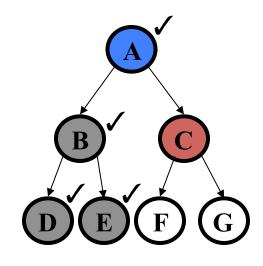
- A = current node A = processing (on the call stack)
- A = completed node ✓ = element has been processed

```
void inOrderTraversal(Node t) {
   if(t != null) {
     inOrderTraversal(t.left);
     process(t.element);
     inOrderTraversal(t.right);
   }
}
```



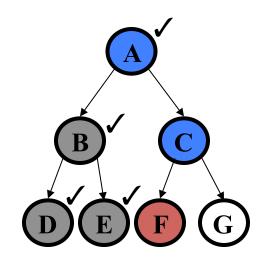
- A = current node A = processing (on the call stack)
- A = completed node ✓ = element has been processed

```
void inOrderTraversal(Node t) {
  if(t != null) {
    inOrderTraversal(t.left);
    process(t.element);
    inOrderTraversal(t.right);
  }
}
```



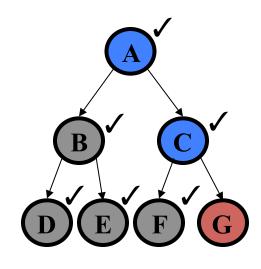
- A = current node A = processing (on the call stack)
- A = completed node ✓ = element has been processed

```
void inOrderTraversal(Node t) {
  if(t != null) {
    inOrderTraversal(t.left);
    process(t.element);
    inOrderTraversal(t.right);
  }
}
```



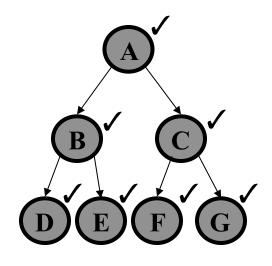
- A = current node A = processing (on the call stack)
- A = completed node ✓ = element has been processed

```
void inOrderTraversal(Node t) {
  if(t != null) {
    inOrderTraversal(t.left);
    process(t.element);
    inOrderTraversal(t.right);
  }
}
```



- A = current node A = processing (on the call stack)
- A = completed node ✓ = element has been processed

```
void inOrderTraversal(Node t) {
  if(t != null) {
    inOrderTraversal(t.left);
    process(t.element);
    inOrderTraversal(t.right);
  }
}
```



- A = current node A = processing (on the call stack)
- A = completed node ✓ = element has been processed