

CSE373: Data Structures and Algorithms

Lecture 2b: Proof by Induction and Powers of Two

Nicki Dell Spring 2014

Mathematical induction

Suppose P(n) is some statement (mentioning integer n) Example: $n \ge n/2 + 1$

We can use induction to prove P(n) for all integers $n \ge n_0$. We need to

- 1. Prove the "base case" i.e. $P(n_0)$. For us n_0 is usually 1.
- Assume the statement holds for P(k).
- 3. Prove the "inductive case" i.e. if P(k) is true, then P(k+1) is true.

Why we will care:

To show an algorithm is correct or has a certain running time no matter how big a data structure or input value is (Our "n" will be the data structure or input size.)

P(n) = "the sum of the first n powers of 2 (starting at 0) is $2^{n}-1$ "

Theorem: P(n) holds for all $n \ge 1$

Proof: By induction on *n*

- Base case: n=1. Sum of first 1 power of 2 is 2^0 , which equals 1. And for n=1, 2^n-1 equals 1.
- Inductive case:
 - Assume the sum of the first k powers of 2 is 2^k-1
 - Show the sum of the first (k+1) powers of 2 is $2^{k+1}-1$ Using assumption, sum of the first (k+1) powers of 2 is $(2^k-1) + 2^{(k+1)-1} = (2^k-1) + 2^k = 2^{k+1}-1$

n	1	2	3	4
sum of first n powers of 2	20 = 1	1 + 2 ¹ = 3	$3 + 2^2 = 7$	$7 + 2^3 = 15$
P(n)	21 - 1 = 1			

n	1	2	3	4
sum of first n powers of 2	20 = 1	1 + 2 ¹ = 3	$3 + 2^2 = 7$	$7 + 2^3 = 15$
P(n)	2 ¹ - 1 = 1	2 ² - 1 = 3		

n	1	2	3	4
sum of first n powers of 2	20 = 1	$1 + 2^1 = 3$	$3 + 2^2 = 7$	$7 + 2^3 = 15$
P(n)	2 ¹ - 1 = 1	2 ² - 1 = 3	2 ³ - 1 = 7	

n	1	2	3	4	
sum of first n powers of 2	20 = 1	$1 + 2^1 = 3$	$3 + 2^2 = 7$	$7 + 2^3 = 15$	•••
P(n)	21 - 1 = 1	2 ² - 1 = 3	2 ³ - 1 = 7	24 - 1 = 15	

Powers of 2

- A bit is 0 or 1 (just two different "letters" or "symbols")
- A sequence of n bits can represent 2ⁿ distinct things
 - For example, the numbers 0 through 2ⁿ-1
- 2¹⁰ is 1024 ("about a thousand", kilo in CSE speak)
- 2²⁰ is "about a million", mega in CSE speak
- 2³⁰ is "about a billion", giga in CSE speak

Java: an **int** is 32 bits and signed, so "max int" is "about 2 billion"

a **long** is 64 bits and signed, so "max long" is 2⁶³-1

Therefore...

Could give a unique id to...

- Every person in the U.S. with 29 bits
- Every person in the world with 33 bits
- Every person to have ever lived with 38 bits (estimate)
- Every atom in the universe with 250-300 bits

So if a password is 128 bits long and randomly generated, do you think you could guess it?