
CSE373: Data Structures & Algorithms

Lecture 28: Final review and class wrap-up

Nicki Dell
Spring 2014

Final Exam

As also indicated on the web page:

•  Next Tuesday, 2:30-4:20 in this room

•  Cumulative but topics post-midterm about 2/3 of the questions

•  See information on course web-page

•  Not unlike the midterms in style, structure, etc.

•  Tough-but-fair exams are the most equitable approach
–  And/but 110 minutes will make a big difference

Spring 2014 CSE373: Data Structures & Algorithms 2

Terminology

•  Abstract Data Type (ADT)
–  Mathematical description of a “thing” with set of operations
–  Not concerned with implementation details

•  Algorithm
–  A high level, language-independent description of a step-by-

step process

•  Data structure
–  A specific organization of data and family of algorithms for

implementing an ADT

•  Implementation of a data structure
–  A specific implementation in a specific language

3 CSE 373 Spring 2014

Asymptotic and Algorithm Analysis

1.  Add up time for all parts of the algorithm
 e.g. number of iterations = (n2+ n)/2

2.  Eliminate low-order terms i.e. eliminate n: (n2)/2
3.  Eliminate coefficients i.e. eliminate 1/2: (n2)

Examples:

–  4n + 5
–  0.5n log n + 2n + 7
–  n3 + 2n + 3n
–  n log (10n2)

•  2n log (10n)

= O(n)
= O(n log n)
= O(2n)

= O(n log n)

CSE 373 Spring 2014 4

The Queue ADT

•  Operations
 create
 destroy
 enqueue
 dequeue
 is_empty

5 CSE 373 Spring 2014

F E D C B enqueue dequeue G A

Back Front

The Stack ADT

Operations:
 create
 destroy
 push
 pop
 top
 is_empty

6 CSE 373 Spring 2014

A

B
C
D
E
F

E D C B A

F

The Dictionary (a.k.a. Map) ADT
•  Data:

–  set of (key, value) pairs
–  keys must be comparable

•  Operations:

–  insert(key,value)
–  find(key)
–  delete(key)
–  …

•  david
David Swanson

 OH: Wed 3.30-4.20
 …

•  nicholas
Nicholas Shahan

 OH: Wed 11.30-12.20
 …

•  megan
Megan Hopp

 OH: Mon 10-10.50
 …

insert(david, ….)

find(megan)
Megan Hopp, …

Spring 2014 7 CSE 373 Algorithms
and Data Structures

Trees

•  Binary tree: Each node has at most 2 children (branching factor 2)
•  n-ary tree: Each node has at most n children (branching factor n)
•  Perfect tree: Each row completely full
•  Complete tree: Each row completely full except maybe the bottom

row, which is filled from left to right

Spring 2014 8 CSE 373 Algorithms
and Data Structures

Tree Calculations

Spring 2014 CSE373: Data Structures & Algorithms 9

A

E

B

D F

C

G

I H

L J M K N

A

Recall: Height of a tree is the maximum
number of edges from the root to a leaf.

Height = 0

A

B Height = 1

What is the height of this tree?

What is the depth of node G?

What is the depth of node L?

Depth = 2

Depth = 4

Height = 4

Tree Traversals
A traversal is an order for visiting all the nodes of a tree

•  Pre-order: root, left subtree, right subtree

 + * 2 4 5

•  In-order: left subtree, root, right subtree
 2 * 4 + 5

•  Post-order: left subtree, right subtree, root
 2 4 * 5 +

+

*

2 4

5

(an expression tree)

Spring 2014 10 CSE 373 Algorithms
and Data Structures

Binary Search Tree (BST) Data Structure

4

12 10 6 2

11 5

8

14

13

7 9

•  Structure property (binary tree)
–  Each node has ≤ 2 children
–  Result: keeps operations simple

•  Order property
–  All keys in left subtree smaller

than node’s key
–  All keys in right subtree larger

than node’s key
–  Result: easy to find any given key

•  Operations
–  Find, insert, delete, BuildTree

Spring 2014 11 CSE373: Data Structures & Algorithms

12

The AVL Tree Data Structure
An AVL tree is a self-balancing binary search tree.

Structural properties

1.  Binary tree property (same as BST)
2.  Order property (same as for BST)
3.  Balance property:

balance of every node is between -1 and 1

Result: Worst-case depth is O(log n)

•  Operations
–  find
–  insert: First BST insert, then check balance and

potentially “fix” the AVL tree (4 cases).

Spring 2014 CSE373: Data Structures & Algorithms

Priority Queues and Binary Heaps
•  Priority Queue ADT:

–  insert comparable object,
–  deleteMin

•  Binary heap data structure:

–  Complete binary tree
–  Each node has less important

 priority value than its parent

•  insert and deleteMin operations = O(height-of-tree)=O(log n)

–  insert: put at new last position in tree and percolate-up
–  deleteMin: remove root, put last element at root and

 percolate-down

Spring 2014 13 CSE 373

insert deleteMin

 6 2
 15 23
 12 18
45 3 7

99 60 40

80 20

10

700 50

85

Union-Find ADT

•  Given an unchanging set S, create an initial partition of a set
–  Typically each item in its own subset: {a}, {b}, {c}, …
–  Give each subset a “name” by choosing a representative

element
•  Operations

–  find takes an element of S and returns the representative
element of the subset it is in

–  union takes two subsets and (permanently) makes one
larger subset

•  Up-tree data structure
–  With path compression and union by size

Spring 2014 14 CSE373: Data
Structures &

Algorithms

Spring 2014 CSE373: Data Structures & Algorithms 15

Hash Tables

•  Collision: when two keys map to the same location in the hash table.
•  Two ways to resolve collision:

•  Separate chaining
•  Open Addressing (linear probing, quadratic probing, double hashing.)

Memory Locality

•  Temporal Locality (locality in time)
–  If an item (a location in memory) is referenced, that same

location will tend to be referenced again soon.

•  Spatial Locality (locality in space)
–  If an item is referenced, items whose addresses are close

by tend to be referenced soon.

Spring 2014 CSE 373 Data
structures and

Algorithms

16

•  Vertex, node, edge
•  Directed, undirected
•  Weighted, unweighted
•  Connected, disconnected, strongly/weakly connected
•  Paths, cycles
•  DAGs

•  Adjacency lists and matrices

Graphs

Spring 2014 CSE373: Data Structures & Algorithms 17

Topological Sort

Problem: Given a DAG G=(V,E), output all vertices in an order such
that no vertex appears before another vertex that has an edge to it

One example output:
 126, 142, 143, 374, 373, 417, 410, 413, XYZ, 415

Spring 2014 18 CSE373: Data

Structures &
Algorithms

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ

Graph Traversals

For an arbitrary graph and a starting node v, find all nodes reachable
from v (i.e., there exists a path from v)

Basic idea:
–  Keep following nodes
–  But “mark” nodes after visiting them, so the traversal terminates

and processes each reachable node exactly once

Important Graph traversal algorithms:
•  “Depth-first search” “DFS”: recursively explore one part before

going back to the other parts not yet explored
•  “Breadth-first search” “BFS”: explore areas closer to the start node

first

Spring 2014 19 CSE373: Data
Structures &

Algorithms

Dijkstra’s Algorithm: Lowest cost
paths

Spring 2014 20 CSE373: Data
Structures &

Algorithms

•  Initially, start node has cost 0 and all other nodes have cost ∞
•  At each step:

–  Pick closest unknown vertex v
–  Add it to the “cloud” of known vertices
–  Update distances for nodes with edges from v

•  That’s it!

A B

D
C

F H

E

G

0 2 4 ∞

4

1

12

∞

2 2 3

1 10 3

11

7

1

2

4

Minimum Spanning Trees

The minimum-spanning-tree problem
–  Given a weighted undirected graph, compute a spanning

tree of minimum weight

Spring 2014 21 CSE373: Data
Structures &

Algorithms

Two different approaches

Spring 2014 22 CSE373: Data
Structures &

Algorithms

Sorting: The Big Picture

Surprising amount of neat stuff to say about sorting:

Spring 2014 23 CSE373: Data
Structures &

Algorithms

Simple
algorithms:

O(n2)

Fancier
algorithms:
O(n log n)

Comparison
lower bound:
Ω(n log n)

Specialized
algorithms:

O(n)

Handling
huge data

sets

Insertion sort
Selection sort
Shell sort
…

Heap sort
Merge sort
Quick sort
…

Bucket sort
Radix sort

External
sorting

Algorithm Design Techniques
•  Greedy (Shortest path, minimum spanning tree, …)
•  Divide and Conquer

–  Divide the problem into smaller subproblems,
solve them, and combine into the overall solution

–  Often done recursively
–  Quick sort, merge sort are great examples

•  Dynamic Programming
–  Brute force through all possible solutions, storing solutions to

subproblems to avoid repeat computation
•  Backtracking (A clever form of exhaustive search)
•  P vs. NP (Know what it means for an algorithm to be in NP, in P.)
•  Parallelism

–  Use threads to split work among many processors.

Spring 2014 24 CSE373: Data
Structures &

Algorithms

•  Good luck J

Phew! That’s it.

Spring 2014 CSE373: Data Structures & Algorithms 25

Victory Lap
A victory lap is an extra trip
around the track

–  By the exhausted victors
 (that’s us) J

Review course goals
–  Slides from Lecture 1
–  What makes CSE 373 special

Spring 2014 CSE373: Data Structures & Algorithms 26

Thank you!

Big thank-you to your TAs
–  Amazingly cohesive “big team”
–  Prompt grading and question-answering
–  Optional TA sessions weren’t optional for them!

Spring 2014 CSE373: Data Structures & Algorithms 27

Thank you!

And huge thank you to all of you
–  Great attitude
–  Showed up to class (most of the time)
–  Occasionally laughed at stuff J

Spring 2014 CSE373: Data Structures & Algorithms 28

Now three slides, completely unedited, from Lecture 1

–  Hopefully they make more sense now
–  Hopefully we succeeded

Spring 2014 CSE373: Data Structures & Algorithms 29

Data Structures

•  Introduction to Algorithm Analysis

•  Lists, Stacks, Queues

•  Trees, Hashing, Dictionaries

•  Heaps, Priority Queues

•  Sorting

•  Disjoint Sets

•  Graph Algorithms

•  May have time for other brief exposure to topics, maybe parallelism

Spring 2014 CSE373: Data Structures & Algorithms 30

What 373 is about

•  Deeply understand the basic structures used in all software
–  Understand the data structures and their trade-offs
–  Rigorously analyze the algorithms that use them (math!)
–  Learn how to pick “the right thing for the job”
–  More thorough and rigorous take on topics introduced in

CSE143 (plus more new topics)

•  Practice design, analysis, and implementation
–  The mixing of “theory” and “engineering” at the core of

computer science

•  More programming experience (as a way to learn)

Spring 2014 CSE373: Data Structures & Algorithms 31

Goals

•  Be able to make good design choices as a developer, project
manager, etc.
–  Reason in terms of the general abstractions that come up in

all non-trivial software (and many non-software) systems
•  Be able to justify and communicate your design decisions

Nicki’s take:

–  Key abstractions used almost every day in just about
anything related to computing and software

–  It is a vocabulary you are likely to internalize permanently

Spring 2014 CSE373: Data Structures & Algorithms 32

Last slide

I had a lot of fun and learned a great deal this quarter.

You have learned the key ideas for organizing data, a skill that far

transcends computer science.

Spring 2014 CSE373: Data Structures & Algorithms 33

