
CSE373: Data Structures & Algorithms

Lecture 26: Introduction to Multithreading &
Fork-Join Parallelism

Nicki Dell
Spring 2014

Changing a major assumption

So far most or all of your study of computer science has assumed

One thing happened at a time

Called sequential programming – everything part of one sequence

Removing this assumption creates major challenges & opportunities

–  Programming: Divide work among threads of execution and
coordinate (synchronize) among them

–  Algorithms: How can parallel activity provide speed-up
(more throughput: work done per unit time)

–  Data structures: May need to support concurrent access
(multiple threads operating on data at the same time)

2 CSE373: Data Structures & Algorithms Spring 2014

A simplified view of history
Writing correct and efficient multithreaded code is often much more

difficult than for single-threaded (i.e., sequential) code
–  Especially in common languages like Java and C
–  So typically stay sequential if possible

From roughly 1980-2005, desktop computers got exponentially
faster at running sequential programs
–  About twice as fast every couple years

But nobody knows how to continue this
–  Increasing clock rate generates too much heat
–  Relative cost of memory access is too high
–  But we can keep making “wires exponentially

smaller” (Moore’s “Law”), so put multiple processors on the
same chip (“multicore”)

3 CSE373: Data Structures & Algorithms Spring 2014

What to do with multiple processors?

•  Next computer you buy will likely have 4 processors
(your current one might already)
–  Wait a few years and it will be 8, 16, 32, …
–  The chip companies have decided to do this (not a “law”)

•  What can you do with them?
–  Run multiple totally different programs at the same time

•  Already do that? Yes, but with time-slicing
–  Do multiple things at once in one program

•  Our focus – more difficult
•  Requires rethinking everything from asymptotic

complexity to how to implement data-structure operations

4 CSE373: Data Structures & Algorithms Spring 2014

Parallelism vs. Concurrency
Note: Terms not yet standard but the perspective is essential

–  Many programmers confuse these concepts

5 CSE373: Data Structures & Algorithms

There is some connection:
–  Common to use threads for both
–  If parallel computations need access to shared resources,

then the concurrency needs to be managed
We will just do a little parallelism, avoiding concurrency issues

Parallelism:
 Use extra resources to
 solve a problem faster

resources

Concurrency:
 Correctly and efficiently manage
 access to shared resources

requests work

resource

Spring 2014

An analogy

CS1 idea: A program is like a recipe for a cook
–  One cook who does one thing at a time! (Sequential)

Parallelism:
–  Have lots of potatoes to slice?
–  Hire helpers, hand out potatoes and knives
–  But too many chefs and you spend all your time coordinating

Concurrency:
–  Lots of cooks making different things, but only 4 stove burners
–  Want to allow access to all 4 burners, but not cause spills or

incorrect burner settings

6 CSE373: Data Structures & Algorithms Spring 2014

Shared memory
The model we will assume is shared memory with explicit threads

–  Not the only approach, may not be best, but time for only one

Old story: A running program has
–  One program counter (current statement executing)
–  One call stack (with each stack frame holding local variables)
–  Objects in the heap created by memory allocation (i.e., new)

•  (nothing to do with data structure called a heap)
–  Static fields - belong to the class and not an instance (or object)

of the class. Only one for all instances of a class.

New story:
–  A set of threads, each with its own program counter & call stack

•  No access to another thread’s local variables
–  Threads can (implicitly) share static fields / objects

•  To communicate, write somewhere another thread reads

7 CSE373: Data Structures & Algorithms Spring 2014

Shared memory

8 CSE373: Data Structures & Algorithms

…

pc=…

…

 pc=…

…

 pc=…

…

Unshared:
locals and
control

Shared:
objects and
static fields

Threads each have own unshared call stack and current statement
–  (pc for “program counter”)
–  local variables are numbers, null, or heap references

Any objects can be shared, but most are not

Spring 2014

Our Needs

To write a shared-memory parallel program, need new primitives
from a programming language or library

•  Ways to create and run multiple things at once

–  Let’s call these things threads

•  Ways for threads to share memory
–  Often just have threads with references to the same objects

•  Ways for threads to coordinate (a.k.a. synchronize)
–  A way for one thread to wait for another to finish
–  [Other features needed in practice for concurrency]

9 CSE373: Data Structures & Algorithms Spring 2014

Java basics
Learn a couple basics built into Java via java.lang.Thread

–  But for style of parallel programming we’ll advocate, do not use
these threads; use Java 7’s ForkJoin Framework instead

To get a new thread running:
1.  Define a subclass C of java.lang.Thread, overriding run
2.  Create an object of class C
3.  Call that object’s start method

• start sets off a new thread, using run as its “main”

What if we instead called the run method of C?
–  This would just be a normal method call, in the current thread

Let’s see how to share memory and coordinate via an example…

10 CSE373: Data Structures & Algorithms Spring 2014

Parallelism idea
•  Example: Sum elements of a large array
•  Idea: Have 4 threads simultaneously sum 1/4 of the array

–  Warning: This is an inferior first approach, but it’s usually good to
start with something naïve works

 ans0 ans1 ans2 ans3
 +
 ans

–  Create 4 thread objects, each given a portion of the work
–  Call start() on each thread object to actually run it in parallel
–  Wait for threads to finish using join()
–  Add together their 4 answers for the final result

11 CSE373: Data Structures & Algorithms Spring 2014

First attempt, part 1

12 CSE373: Data Structures & Algorithms

class SumThread extends java.lang.Thread {

 int lo; // arguments
 int hi;
 int[] arr;

 int ans = 0; // result

 SumThread(int[] a, int l, int h) {
 lo=l; hi=h; arr=a;
 }

 public void run() { //override must have this type
 for(int i=lo; i < hi; i++)
 ans += arr[i];
 }
}

Because we must override a no-arguments/no-result run,
we use fields to communicate across threads

Spring 2014

First attempt, continued (wrong)

13 CSE373: Data Structures & Algorithms

class SumThread extends java.lang.Thread {
 int lo, int hi, int[] arr; // arguments
 int ans = 0; // result
 SumThread(int[] a, int l, int h) { … }
 public void run(){ … } // override
}

int sum(int[] arr){ // can be a static method
 int len = arr.length;
 int ans = 0;
 SumThread[] ts = new SumThread[4];
 for(int i=0; i < 4; i++) // do parallel computations
 ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);
 for(int i=0; i < 4; i++) // combine results
 ans += ts[i].ans;
 return ans;
}

Spring 2014

Second attempt (still wrong)

14 CSE373: Data Structures & Algorithms

int sum(int[] arr){ // can be a static method
 int len = arr.length;
 int ans = 0;
 SumThread[] ts = new SumThread[4];
 for(int i=0; i < 4; i++){// do parallel computations
 ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);
 ts[i].start(); // start not run
 }
 for(int i=0; i < 4; i++) // combine results
 ans += ts[i].ans;
 return ans;
}

class SumThread extends java.lang.Thread {
 int lo, int hi, int[] arr; // arguments
 int ans = 0; // result
 SumThread(int[] a, int l, int h) { … }
 public void run(){ … } // override
}

Spring 2014

Third attempt (correct in spirit)

15 CSE373: Data Structures & Algorithms

int sum(int[] arr){// can be a static method
 int len = arr.length;
 int ans = 0;
 SumThread[] ts = new SumThread[4];
 for(int i=0; i < 4; i++){// do parallel computations
 ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);
 ts[i].start();
 }
 for(int i=0; i < 4; i++) { // combine results
 ts[i].join(); // wait for helper to finish!
 ans += ts[i].ans;
 }
 return ans;
}

class SumThread extends java.lang.Thread {
 int lo, int hi, int[] arr; // arguments
 int ans = 0; // result
 SumThread(int[] a, int l, int h) { … }
 public void run(){ … } // override
}

Spring 2014

Join (not the most descriptive word)
•  The Thread class defines various methods you could not

implement on your own
–  For example: start, which calls run in a new thread

•  The join method is valuable for coordinating this kind of
computation
–  Caller blocks until/unless the receiver is done executing

(meaning the call to run returns)
–  Else we would have a race condition on ts[i].ans

(answer would depend on what finishes first)

•  This style of parallel programming is called “fork/join”

•  Java detail: code has 1 compile error because join may throw
java.lang.InterruptedException
–  In basic parallel code, should be fine to catch-and-exit

16 CSE373: Data Structures & Algorithms Spring 2014

Shared memory?

•  Fork-join programs (thankfully) do not require much focus on
sharing memory among threads

•  But in languages like Java, there is memory being shared.
In our example:
–  lo, hi, arr fields written by “main” thread, read by helper

thread
–  ans field written by helper thread, read by “main” thread

•  When using shared memory, you must avoid race conditions
–  We will stick with join to do so

17 CSE373: Data Structures & Algorithms Spring 2014

A better approach
Several reasons why this is a poor parallel algorithm

1.  Want code to be reusable and efficient across platforms
–  “Forward-portable” as core count grows
–  So at the very least, parameterize by the number of threads

18 CSE373: Data Structures & Algorithms

int sum(int[] arr, int numTs){
 int ans = 0;
 SumThread[] ts = new SumThread[numTs];
 for(int i=0; i < numTs; i++){
 ts[i] = new SumThread(arr,(i*arr.length)/numTs,
 ((i+1)*arr.length)/numTs);
 ts[i].start();
 }
 for(int i=0; i < numTs; i++) {
 ts[i].join();
 ans += ts[i].ans;
 }
 return ans;
}
 Spring 2014

A Better Approach
2.  Want to use (only) processors “available to you now”

–  Not used by other programs or threads in your program
•  Maybe caller is also using parallelism
•  Available cores can change even while your threads run

19 CSE373: Data Structures & Algorithms

// numThreads == numProcessors is bad
// if some are needed for other things
int sum(int[] arr, int numTs){
 …
}

Spring 2014

A Better Approach

3. Though unlikely for sum, in general subproblems may take
significantly different amounts of time

–  Example: Apply method f to every array element, but maybe
f is much slower for some data items
•  Example: Is a large integer prime?

–  If we create 4 threads and all the slow data is processed by 1
of them, we won’t get nearly a 4x speedup
•  Example of a load imbalance

20 CSE373: Data Structures & Algorithms Spring 2014

A Better Approach
The counterintuitive (?) solution to all these problems is to use lots of

threads, far more than the number of processors
–  But this will require changing our algorithm
–  [And using a different Java library]

21 CSE373: Data Structures & Algorithms

 ans0 ans1 … ansN
 ans

1.  Forward-portable: Lots of helpers each doing a small piece
2.  Processors available: Hand out “work chunks” as you go
3.  Load imbalance: No problem if slow thread scheduled early enough

•  Variation probably small anyway if pieces of work are small

Spring 2014

Naïve algorithm is poor
Suppose we create 1 thread to process every 1000 elements

22 CSE373: Data Structures & Algorithms

int sum(int[] arr){
 …
 int numThreads = arr.length / 1000;
 SumThread[] ts = new SumThread[numThreads];
 …
}

Then combining results will have arr.length / 1000 additions
•  Linear in size of array (with constant factor 1/1000)
•  Previously we had only 4 pieces (constant in size of array)

In the extreme, if we create 1 thread for every 1 element, the loop
to combine results has length-of-array iterations

•  Just like the original sequential algorithm
 Spring 2014

A better idea

This is straightforward to implement using divide-and-conquer
–  Parallelism for the recursive calls

23 CSE373: Data Structures & Algorithms

+ + + + + + + +

+ + + +

+ +
+

Spring 2014

Divide-and-conquer to the rescue!

The key is to do the result-combining in parallel as well
–  And using recursive divide-and-conquer makes this natural
–  Easier to write and more efficient asymptotically!

24 CSE373: Data Structures & Algorithms Spring 2014

class SumThread extends java.lang.Thread {
 int lo; int hi; int[] arr; // arguments
 int ans = 0; // result
 SumThread(int[] a, int l, int h) { … }
 public void run(){ // override
 if(hi – lo < SEQUENTIAL_CUTOFF)
 for(int i=lo; i < hi; i++)
 ans += arr[i];
 else {
 SumThread left = new SumThread(arr,lo,(hi+lo)/2);
 SumThread right= new SumThread(arr,(hi+lo)/2,hi);
 left.start();
 right.start();
 left.join(); // don’t move this up a line – why?
 right.join();
 ans = left.ans + right.ans;
 }
 }
}
int sum(int[] arr){
 SumThread t = new SumThread(arr,0,arr.length);
 t.run();
 return t.ans;
}

Divide-and-conquer really works

•  The key is divide-and-conquer parallelizes the result-combining
–  If you have enough processors, total time is height of the tree:

O(log n) (optimal, exponentially faster than sequential O(n))

25 CSE373: Data Structures & Algorithms

+ + + + + + + +

+ + + +

+ +

+

Spring 2014

Being realistic
•  In theory, you can divide down to single elements, do all your

result-combining in parallel and get optimal speedup
–  Total time O(n/numProcessors + log n)

•  In practice, creating all those threads and communicating
swamps the savings, so:
–  Use a sequential cutoff, typically around 500-1000

•  Eliminates almost all the recursive thread creation
(bottom levels of tree)

•  Exactly like quicksort switching to insertion sort for small
subproblems, but more important here

–  Do not create two recursive threads; create one and do the
other “yourself”
•  Cuts the number of threads created by another 2x

26 CSE373: Data Structures & Algorithms Spring 2014

Being realistic, part 2
•  Even with all this care, Java’s threads are too “heavyweight”

–  Constant factors, especially space overhead
–  Creating 20,000 Java threads is just a bad idea L

•  The ForkJoin Framework is designed to meet the needs of divide-
and-conquer fork-join parallelism
–  In the Java 7 standard libraries
–  Library’s implementation is a fascinating but advanced topic

•  Next lecture will discuss its guarantees, not how it does it
–  Names of methods and how to use them slightly different

27 CSE373: Data Structures & Algorithms Spring 2014

