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Admin 

•  Homework 5 due TONIGHT at 11pm! 
 
•  Homework 6 is posted 

– Due one week from today, June 4th at 11pm 
– No partners 
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The $1M question 
The Clay Mathematics Institute  
Millenium Prize Problems 
 
1.  Birch and Swinnerton-Dyer Conjecture  
2.  Hodge Conjecture  
3.  Navier-Stokes Equations  
4.  P vs NP  
5.  Poincaré Conjecture  
6.  Riemann Hypothesis  
7.  Yang-Mills Theory  
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The P versus NP problem 
 
Is one of the biggest open problems in computer 

science (and mathematics) today 
 
It’s currently unknown whether there exist polynomial 
time algorithms for NP-complete problems 

–  That is, does P = NP? 
–  People generally believe P ≠ NP, but no proof yet 

 
But what is the P-NP problem? 
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Sudoku 

3x3x3 
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Sudoku 

4x4x4 
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Sudoku 
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Sudoku 

n x n x n 

...
 

Suppose you have an algorithm 
S(n) to solve n x n x n 

V(n) time to verify the solution 
Fact: V(n) = O(n2 x n2) 

Question: is there some 
constant such that 
S(n) = O(nconstant)? 
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Sudoku 

n x n x n 

...
 

P vs NP problem 

= 

Does there exist an algorithm 
for solving n x n x n Sudoku 
that runs in time p(n) for some 
polynomial p( ) ?   
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The P versus NP problem (informally) 

Is finding an answer to a problem much more 
difficult than verifying an answer to a problem? 
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Hamilton Cycle 

Given a graph G = (V,E), is there a cycle that 
visits all the nodes exactly once? 
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YES if G has a Hamilton cycle 
NO if G has no Hamilton cycle 

The Set “HAM” 
HAM = { graph G | G has a Hamilton cycle } 



AND 

AND 

NOT 

Circuit-Satisfiability 

Input: A circuit C with one output 

Output: YES if C is satisfiable 

NO if C is not satisfiable 
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The Set “SAT” 
SAT = { all satisfiable circuits C } 



Sudoku 

Input: n x n x n sudoku instance 

Output: YES if this sudoku has a solution 

NO if it does not 

The Set “SUDOKU” 
SUDOKU = { All solvable sudoku instances } 
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Polynomial Time and 
The Class “P” 
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What is an efficient algorithm? 

polynomial time 
 
O(nc) for some  
constant c 

non-polynomial 
time 

Is an O(n) algorithm efficient? 

How about O(n log n)? 

O(n2) ? 

O(n10) ? 

O(nlog n) ? 

O(2n) ? 

O(n!) ? 
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Does an algorithm running in O(n100) time count as 
efficient? 
 
Asking for a poly-time algorithm for a problem sets a 
(very) low bar when asking for efficient algorithms. 
 
We consider non-polynomial time algorithms to be 
inefficient. 
 
And hence a necessary condition for an algorithm to be 
efficient is that it should run in poly-time. 
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What is an efficient algorithm? 



The Class P 

The class of all sets that can be 
verified in polynomial time. 
    AND 

The class of all decision 
problems that can be    
decided in polynomial time. 
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P	
  

Binary	
  Search	
  

Breadth-­‐First	
  Search	
  

Dijkstra’s	
  Algorithm	
  

SorAng	
  Algorithms	
  



 
The question is: can we achieve even this for  

 
HAM?  
SAT? 

Sudoku? 
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Onto the new class, NP 
 

(Nondeterministic Polynomial Time) 
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Verifying Membership 

Is there a short “proof” I can give you to verify that: 
 
G ∈ HAM? 
G ∈ Sudoku? 
G ∈ SAT? 
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Yes: I can just give you the cycle, solution, circuit 



The Class NP 

The class of sets for which there exist 
“short” proofs of membership  
(of polynomial length)  
that can “quickly” verified  
(in polynomial time). 

 
 
 
Recall: The algorithm doesn’t have to find the proof; it just needs to be 

able to verify that it is a “correct” proof. 
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Fact: P ⊆ NP 



P ⊆ NP 

Winter 2014 23 
CSE373: Data Structures 

& Algorithms 

Binary	
  Search	
  

Breadth-­‐First	
  Search	
  

Dijkstra’s	
  Algorithm	
  

SorAng	
  Algorithms	
  
…	
  

P	
  

NP	
  
Hamilton	
  Cycle	
  

Sudoku	
  

SAT	
  

…	
  



Summary: P versus NP 

P: in NP (membership verified in polynomial time) 

AND membership in a set can be decided in polynomial time. 

NP: “proof of membership” in a set can be verified in 
polynomial time. 

Fact: P ⊆ NP 

Question: Does NP ⊆ P ? 
i.e. Does P = NP? 
People generally believe P ≠ NP, but no proof yet 
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Why Care? 
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Classroom Scheduling 
Packing objects into bins 
Scheduling jobs on machines 
Finding cheap tours visiting a subset of cities 
Finding good packet routings in networks 
Decryption 
… 

NP Contains Lots of Problems 
We Don’t Know to be in P 
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OK, OK, I care... 
 



 
We would have to show that every set in NP has a 
polynomial time algorithm… 
 
How do I do that?  
It may take a long time! 
Also, what if I forgot one of the sets in NP? 
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How could we prove that NP = P? 



We can describe just one problem L in NP, such that if 
this problem L is in P, then NP ⊆ P. 
 
It is a problem that can capture all other problems in NP. 
 
The “Hardest” Set in NP  
 
We call these problems NP-complete 
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How could we prove that NP = P? 



Theorem [Cook/Levin] 
 
SAT is one problem in NP, such that if we can show 
SAT is in P, then we have shown NP = P. 
 
SAT is a problem in NP that can capture all other 
languages in NP. 
 
We say SAT is NP-complete. 
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Poly-time reducible to each other 

Oracle for 
problem X 

Oracle for 
problem Y 

  
Instance of 
problem Y 

Map instance of Y 
into instance of X 

Takes polynomial time 

Answer 

Answer 
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Any problem in NP SAT 

can be reduced  
(in polytime to) 
an instance of  

hence SAT is 
NP-complete 

Sudoku 

can be reduced  
(in polytime to) 
an instance of 

hence Sudoku 
is NP-complete 



NP-complete: The “Hardest” problems in NP 

Sudoku 

SAT 

3-Colorability 

Clique 

HAM 

Independent-Set 

These problems are all “polynomial-time equivalent” 
i.e., each of these can be reduced to any of the others 
in polynomial time 
 
If you get a polynomial-time algorithm for one, 
you get a polynomial-time algorithm for ALL. 
(you get millions of dollars, you solve decryption, … etc.) 
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