CSE373: Data Structure & Algorithms

Lecture 23: More Sorting and Other
Classes of Algorithms

Nicki Dell
Spring 2014

Admin

* No class on Monday

 Extra time for homework 5 ©

Spring 2014 CSE373: Data Structures & Algorithms

Sorting: The Big Picture

Surprising amount of neat stuff to say about sorting:

Simple Fancier Comparison Specialized
algorithms: algorithms: lower bound: algorithms:
O(n?) O(n log n) Q(n log n) O(n)
Insertion sort Heap sort Bucket sort
Selection sort Merge sort Radix sort
Shell sort Quick sort

Spring 2014 CSE373: Data Structures & Algorithms

Handling
huge data
sets

External
sorting

Radix sort

» Origins go back to the 1890 U.S. census
« Radix = “the base of a number system”
— Examples will use 10 because we are used to that
— In implementations use larger numbers
« For example, for ASCII strings, might use 128

* l|dea:
— Bucket sort on one digit at a time
« Number of buckets = radix
« Starting with /east significant digit
« Keeping sort stable
— Do one pass per digit
— Invariant: After k passes (digits), the last k digits are sorted

Spring 2014 CSE373: Data Structures & Algorithms

Example

Radix = 10 ol 11213456]| 7| 8

721 3 S37 | 478
143 671 38

Input: 478 _ Order now: 7
537 First pass:

9 bucket sort by ones digit 1

721 S)
3
38 4
143
67

Spring 2014 CSE373: Data Structures & Algorithms

Example

Radix = 10

Order was: 7

Spring 2014

0 1 2 3 4 6 7 8
721 3 537 | 478
143 67 | 38
0|1]2]|3]4 6 | 7| 8
3 721 | 537 | 143 67 | 478
9 38
Second pass: Order now:
stable bucket sort by tens digit
121
53
3
14
6
47

CSE373: Data Structures & Algorithms

Example
Radix =10
Orderwas: |3

9

Spring 2014

21
37
38

43

67
/8

0 1 2 3 4 5 6 7
3 721 | 537 | 143 67 | 478
9 38
0 1 2 3 4 5 6 7
31143 478 | 537 721
9
38
67 Order now:
Third pass: 3
stable bucket sort by 100s digit 6
14
47
23
721

CSE373: Data Structures & Algorithms

Analysis

Input size: n
Number of buckets = Radix: B
Number of passes = “Digits”: P

Work per pass is 1 bucket sort: O(B+n)
Total work is O(P(B+n))

Compared to comparison sorts, sometimes a win, but often not
— Example: Strings of English letters up to length 15
» Run-time proportional to: 15*(52 + n)
* This is less than nlog n only if n > 33,000

» Of course, cross-over point depends on constant factors of
the implementations

— And radix sort can have poor locality properties

Spring 2014 CSE373: Data Structures & Algorithms 8

Sorting: The Big Picture

Surprising amount of neat stuff to say about sorting:

Simple Fancier Comparison Specialized
algorithms: algorithms: lower bound: algorithms:
O(n?) O(n log n) Q(n log n) O(n)
Insertion sort Heap sort Bucket sort
Selection sort Merge sort Radix sort
Shell sort Quick sort

Spring 2014 CSE373: Data Structures & Algorithms

Handling
huge data
sets

External
sorting

Last Slide on Sorting

« Simple O(n?) sorts can be fastest for small n
— Selection sort, Insertion sort (latter linear for mostly-sorted)
— Good for “below a cut-off” to help divide-and-conquer sorts
* O(n log n) sorts
— Heap sort, in-place but not stable nor parallelizable
— Merge sort, not in place but stable and works as external sort
— Quick sort, in place but not stable and O(n?) in worst-case
» Often fastest, but depends on costs of comparisons/copies

« Q (n log n) is worst-case and average lower-bound for sorting by
comparisons

* Non-comparison sorts

— Bucket sort good for small number of possible key values
— Radix sort uses fewer buckets and more phases

Best way to sort? It depends!

Spring 2014 CSE373: Data Structures & Algorithms 10

Done with sorting! (phew..)

 Moving on....

« There are many many algorithm techniques in the world
— We've learned a few

 What are a few other “classic” algorithm techniques you should
at least have heard of?

— And what are the main ideas behind how they work?

Spring 2014 CSE373: Data Structures & Algorithms

11

Algorithm Design Techniques

Greedy
— Shortest path, minimum spanning tree, ...
Divide and Conquer

— Divide the problem into smaller subproblems,
solve them, and combine into the overall solution

— Often done recursively
— Quick sort, merge sort are great examples
Dynamic Programming

— Brute force through all possible solutions, storing solutions to
subproblems to avoid repeat computation

Backtracking
— A clever form of exhaustive search

Spring 2014 CSE373: Data Structures & Algorithms 12

Dynamic Programming: ldea

Divide a bigger problem into many smaller subproblems

» |If the number of subproblems grows exponentially, a recursive
solution may have an exponential running time ®

« Dynamic programming to the rescue! ©

« Often an individual subproblem may occur many times!

— Store the results of subproblems in a table and re-use them
instead of recomputing them

— Technique called memoization

Spring 2014 CSE373: Data Structures & Algorithms 13

Fibonacci Sequence: Recursive

« The fibonacci sequence is a very famous number sequence

- 0,1,1,2,3,5,8, 13, 21, 34, ...

« The next number is found by adding up the two numbers before it.
* Recursive solution:

fib(int n) {

if (n == |l n == 2) {
return 1

}

return fib(n - 2) + fib(n - 1)

}

* Exponential running time!
— A lot of repeated computation

Spring 2014 CSE373: Data Structures & Algorithms 14

Repeated computation

e

f(3) f(4) f(5)
TN TN
f(1) f(2) f(2) f(3)

Spring 2014 CSE373: Data Structures & Algorithms 15

Fibonacci Sequence: memoized

fib(int n) {
Map results = new Map()
results.put(l, 1)
results.put(2, 1)
return fibHelper (n, results)

}
fibHelper (int n, Map results) ({

if ('results.contains(n)) {
results.put(n, fibHelper (n-2)+fibHelper (n-1))

}

return results.get (n)

}

Now each call of £ib (x) only gets computed once for each x!

Spring 2014 CSE373: Data Structures & Algorithms

16

Comments

Dynamic programming relies on working “from the bottom up”
and saving the results of solving simpler problems

— These solutions to simpler problems are then used to
compute the solution to more complex problems

« Dynamic programming solutions can often be quite complex
and tricky

« Dynamic programming is used for optimization problems,
especially ones that would otherwise take exponential time

— Only problems that satisfy the principle of optimality are
suitable for dynamic programming solutions

— i.e. the subsolutions of an optimal solution of the problem
are themselves optimal solutions for their subproblems

Since exponential time is unacceptable for all but the smallest
problems, dynamic programming is sometimes essential

$pring 2014 CSE373: Data Structures & Algorithms

Algorithm Design Techniques

Greedy
— Shortest path, minimum spanning tree, ...
Divide and Conquer

— Divide the problem into smaller subproblems,
solve them, and combine into the overall solution

— Often done recursively
— Quick sort, merge sort are great examples
Dynamic Programming

— Brute force through all possible solutions, storing solutions to
subproblems to avoid repeat computation

Backtracking
— A clever form of exhaustive search

Spring 2014 CSE373: Data Structures & Algorithms 18

Backtracking: Idea

« Backtracking is a technique used to solve problems with a large
search space, by systematically trying and eliminating possibilities.

« A standard example of backtracking would be going through a maze.
— At some point, you might have two options of which direction to go:

Spring 2014

Junction

Portion A

Portion B

C S E 19

Backtracking

To)l
0
One strategy would be to try going 3\)90
through Portion A of the maze. _
If you get stuck before you find your Portion B

way out, then you "backtrack” to the
junction.

At this point in time you know that
Portion A will NOT lead you out of the
maze,

Portion A

so you then start searching in
Portion B

Spring 2014 CSE373: Data Structures & Algorithms 20

Backtracking

» Clearly, at a single junction you could
have even more than 2 choices.

« The backtracking strategy says to try
each choice, one after the other,

— if you ever get stuck, "backtrack”
to the junction and try the next
choice.

» If you try all choices and never found
a way out, then there IS no solution to
the maze.

Spring 2014 CSE373: Data Structures & Algorithms 21

Backtracking (animation)

A//v dead end

?
Q dead end dead end
ead en
/ ///
o=

‘)
start —> ?2—> ? e,
\ dead end
dead end
<
success!

Spring 2014 CSE373: Data Structures & Algorithms

Backtracking

* Dealing with the maze:
— From your start point, you will iterate through each possible
starting move.
— From there, you recursively move forward.
— If you ever get stuck, the recursion takes you back to where
you were, and you try the next possible move.

 Make sure you don't try too many possibilities,

— Mark which locations in the maze have been visited already so
that no location in the maze gets visited twice.

— (If a place has already been visited, there is no point in trying to
reach the end of the maze from there again.

Spring 2014 CSE373: Data Structures & Algorithms 23

Backtracking

The neat thing about coding up backtracking is that it can be done
recursively, without having to do all the bookkeeping at once.

— |Instead, the stack of recursive calls does most of the
bookkeeping

— (i.e., keeps track of which locations we've tried so far.)

Spring 2014 CSE373: Data Structures & Algorithms

24

Backtracking: The 8 queens problem

* Find an arrangement of 8 queens on a
single chess board such that no two
gueens are attacking one another.

* In chess, queens can move all the way
down any row, column or diagonal (so
long as no pieces are in the way).

— Due to the first two restrictions, it's
clear that each row and column of the
board will have exactly one queen.

Spring 2014 CSE373: Data Structures & Algorithms 25

Backtracking

The backtracking strategy is as follows:

1) Place a queen on the first available
square in row 1.

2) Move onto the next row, placing a
queen on the first available square
there (that doesn't conflict with the
previously placed queens).

3) Continue in this fashion until either:
a) You have solved the problem, or
b) You get stuck.

When you get stuck, remove the Animated Example:
queens that got you there, until you

get to a row where there is another

valid square to try.

Spring 2014 CSE373: Data Structures & Algorithms 26

Backtracking — 8 queens Analysis

» Another possible brute-force algorithm is generate all possible
permutations of the numbers 1 through 8 (there are 8! = 40,320),

— Use the elements of each permutation as possible positions in
which to place a queen on each row.

— Reject those boards with diagonal attacking positions.

« The backtracking algorithm does a bit better

— constructs the search tree by considering one row of the board at
a time, eliminating most non-solution board positions at a very
early stage in their construction.

— because it rejects row and diagonal attacks even on incomplete
boards, it examines only 15,720 possible queen placements.

« 15,720 is still a lot of possibilities to consider
— Sometimes we have no other choice but to do the best we can ©

Spring 2014 CSE373: Data Structures & Algorithms 27

Algorithm Design Techniques

Greedy
— Shortest path, minimum spanning tree, ...
Divide and Conquer

— Divide the problem into smaller subproblems,
solve them, and combine into the overall solution

— Often done recursively
— Quick sort, merge sort are great examples
Dynamic Programming

— Brute force through all possible solutions, storing solutions to
subproblems to avoid repeat computation

Backtracking
— A clever form of exhaustive search

Spring 2014 CSE373: Data Structures & Algorithms 28

