
CSE373: Data Structure & Algorithms 
 

Lecture 20: Comparison Sorting 

Nicki Dell 
Spring 2014 



Admin 

•  Homework 5 partner selection due on Wednesday 
–  Catalyst link posted on the webpage 

•  START SOON!! 

Spring 2014 2 CSE373: Data Structures & Algorithms 



Introduction to Sorting 
•  Stacks, queues, priority queues, and dictionaries all focused on 

providing one element at a time 
 

•  But often we know we want “all the things” in some order 
–  Humans can sort, but computers can sort fast 
–  Very common to need data sorted somehow 

•  Alphabetical list of people 
•  List of countries ordered by population 
•  Search engine results by relevance 
•  … 

•  Algorithms have different asymptotic and constant-factor trade-offs 
–  No single “best” sort for all scenarios 
–  Knowing one way to sort just isn’t enough 

Spring 2014 3 CSE373: Data Structures & Algorithms 



More Reasons to Sort 

General technique in computing:  
 Preprocess data to make subsequent operations faster 

 
Example: Sort the data so that you can 

–  Find the kth largest in constant time for any k 
–  Perform binary search to find elements in logarithmic time 

Whether the performance of the preprocessing matters depends on 
–  How often the data will change (and how much it will change) 
–  How much data there is 

Spring 2014 4 CSE373: Data Structures & Algorithms 



Why Study Sorting in this Class? 

•  Unlikely you will ever need to reimplement a sorting algorithm yourself 
–  Standard libraries will generally implement one or more (Java 

implements 2) 
 

•  You will almost certainly use sorting algorithms 
–  Important to understand relative merits and expected performance 
 

•  Excellent set of algorithms for practicing analysis and comparing design 
techniques 
–  Classic part of a data structures class, so you’ll be expected to know it 

Spring 2014 5 CSE373: Data Structures & Algorithms 



The main problem, stated carefully 

For now, assume we have n comparable elements in an array and 
we want to rearrange them to be in increasing order 

 

Input: 
–  An array A of data records 
–  A key value in each data record 
–  A comparison function (consistent and total) 

 

Effect: 
–  Reorganize the elements of A such that for any i and j,       

if i < j then A[i] ≤ A[j] 
–  (Also, A must have exactly the same data it started with) 
–  Could also sort in reverse order, of course 

An algorithm doing this is a comparison sort 
Spring 2014 6 CSE373: Data Structures & Algorithms 



Variations on the Basic Problem 
1.  Maybe elements are in a linked list (could convert to array and  

back in linear time, but some algorithms needn’t do so) 

2.  Maybe ties need to be resolved by “original array position” 
–  Sorts that do this naturally are called stable sorts 
–  Others could tag each item with its original position and 

adjust comparisons accordingly (non-trivial constant factors) 

3.  Maybe we must not use more than O(1) “auxiliary space” 
–  Sorts meeting this requirement are called in-place sorts 

4.  Maybe we can do more with elements than just compare 
–  Sometimes leads to faster algorithms 

5.  Maybe we have too much data to fit in memory 
–  Use an “external sorting” algorithm 

Spring 2014 7 CSE373: Data Structures & Algorithms 



Sorting: The Big Picture 

Surprising amount of neat stuff to say about sorting: 
 

Spring 2014 8 CSE373: Data Structures & Algorithms 

Simple 
algorithms: 

O(n2) 

Fancier 
algorithms: 
O(n log n) 

Comparison 
lower bound: 
Ω(n log n) 

Specialized 
algorithms: 

O(n) 

Handling 
huge data 

sets 

Insertion sort 
Selection sort 
Shell sort 
… 

Heap sort 
Merge sort 
Quick sort 
… 

Bucket sort 
Radix sort 

External 
sorting 



Insertion Sort 
•  Idea: At step k, put the kth element in the correct position among 

the first k elements 
 

•  Alternate way of saying this: 
–  Sort first two elements 
–  Now insert 3rd element in order 
–  Now insert 4th element in order 
–  … 

•  “Loop invariant”: when loop index is i, first i elements are sorted 
 
•  Let’s see a visualization (http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html) 

•  Time?  
    Best-case  _____     Worst-case  _____     “Average” case ____ 

Spring 2014 9 CSE373: Data Structures & Algorithms 



Insertion Sort 
•  Idea: At step k, put the kth element in the correct position among 

the first k elements 
 

•  Alternate way of saying this: 
–  Sort first two elements 
–  Now insert 3rd element in order 
–  Now insert 4th element in order 
–  … 

•  “Loop invariant”: when loop index is i, first i elements are sorted 
 
•  Let’s see a visualization (http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html) 

•  Time?  
    Best-case   O(n)     Worst-case   O(n2)     “Average” case   O(n2) 

           start sorted           start reverse sorted       (see text)   
Spring 2014 10 CSE373: Data Structures & Algorithms 



Selection sort 
•  Idea: At step k, find the smallest element among the not-yet-

sorted elements and put it at position k 
 

•  Alternate way of saying this: 
–  Find smallest element, put it 1st 
–  Find next smallest element, put it 2nd 

–  Find next smallest element, put it 3rd … 
 

•   “Loop invariant”: when loop index is i, first i elements are the i 
smallest elements in sorted order 

 

•  Let’s see a visualization (http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html) 
 

•  Time?  
    Best-case  _____     Worst-case  _____     “Average” case ____ 

Spring 2014 11 CSE373: Data Structures & Algorithms 



Selection sort 
•  Idea: At step k, find the smallest element among the not-yet-

sorted elements and put it at position k 
 

•  Alternate way of saying this: 
–  Find smallest element, put it 1st 
–  Find next smallest element, put it 2nd 

–  Find next smallest element, put it 3rd … 
 

•   “Loop invariant”: when loop index is i, first i elements are the i 
smallest elements in sorted order 

 

•  Let’s see a visualization (http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html) 
 

•  Time?  
    Best-case  O(n2)    Worst-case O(n2)     “Average” case O(n2) 
         Always T(1) = 1 and T(n) = n + T(n-1) 

Spring 2014 12 CSE373: Data Structures & Algorithms 



Insertion Sort vs. Selection Sort 

•  Different algorithms 

•  Solve the same problem 

•  Have the same worst-case and average-case asymptotic 
complexity 
–  Insertion-sort has better best-case complexity; preferable 

when input is “mostly sorted” 

•  Other algorithms are more efficient for large arrays that are not 
already almost sorted 
–  Insertion sort may do well on small arrays 

Spring 2014 13 CSE373: Data Structures & Algorithms 



Aside: We Will Not Cover Bubble Sort 

•  It is not, in my opinion, what a “normal person” would think of 

•  It doesn’t have good asymptotic complexity: O(n2) 

•  It’s not particularly efficient with respect to constant factors 
 

Basically, almost everything it is good at some other algorithm is at 
least as good at 

–  Perhaps people teach it just because someone taught it to 
them? 

 

Fun, short, optional read:  
Bubble Sort: An Archaeological Algorithmic Analysis, Owen Astrachan, 
SIGCSE 2003, http://www.cs.duke.edu/~ola/bubble/bubble.pdf 
 
 Spring 2014 14 CSE373: Data Structures & Algorithms 



The Big Picture 

Surprising amount of juicy computer science: 2-3 lectures… 
 

Spring 2014 15 CSE373: Data Structures & Algorithms 

Simple 
algorithms: 

O(n2) 

Fancier 
algorithms: 
O(n log n) 

Comparison 
lower bound: 
Ω(n log n) 

Specialized 
algorithms: 

O(n) 

Handling 
huge data 

sets 

Insertion sort 
Selection sort 
Shell sort 
… 

Heap sort 
Merge sort 
Quick sort (avg) 
… 

Bucket sort 
Radix sort 

External 
sorting 



Heap sort 

•  Sorting with a heap is easy: 
–  insert each arr[i], or better yet use buildHeap 
–  for(i=0; i < arr.length; i++)       
     arr[i] = deleteMin(); 
 

•  Worst-case running time: O(n log n) 

•  We have the array-to-sort and the heap 
–  So this is not an in-place sort 
–  There’s a trick to make it in-place… 

Spring 2014 16 CSE373: Data Structures & Algorithms 



In-place heap sort 

–  Treat the initial array as a heap (via buildHeap) 
–  When you delete the ith  element, put it at arr[n-i] 

•  That array location isn’t needed for the heap anymore! 

Spring 2014 17 CSE373: Data Structures & Algorithms 

4 7 5 9 8 6 10 3 2 1 

sorted part heap part 

arr[n-i]= 
deleteMin() 

5 7 6 9 8 10 4 3 2 1 

sorted part heap part 

But this reverse sorts –  
how would you fix that? 



“AVL sort” 

•  We can also use a balanced tree to: 
–  insert each element: total time O(n log n) 
–  Repeatedly deleteMin: total time O(n log n) 

•  Better: in-order traversal O(n), but still O(n log n) overall 

•  But this cannot be made in-place and has worse constant 
factors than heap sort 
–  both are O(n log n) in worst, best, and average case 
–  neither parallelizes well 
–  heap sort is better 

Spring 2014 18 CSE373: Data Structures & Algorithms 



“Hash sort”??? 

•  Don’t even think about trying to sort with a hash table! 

•  Finding min item in a hashtable is O(n), so this would be a 
slower, more complicated selection sort 

 
•  And we’ve already seen that selection sort is pretty bad! 

Spring 2014 19 CSE373: Data Structures & Algorithms 



Divide and conquer 

Very important technique in algorithm design 

1.  Divide problem into smaller parts 

2.  Independently solve the simpler parts  
–  Think recursion 
–  Or potential parallelism 

3.  Combine solution of parts to produce overall solution 
 

(This technique has a long history.) 

Spring 2014 20 CSE373: Data Structures & Algorithms 



Divide-and-Conquer Sorting 

Two great sorting methods are fundamentally divide-and-conquer 
 
1.  Mergesort:     Sort the left half of the elements (recursively) 

         Sort the right half of the elements (recursively) 
      Merge the two sorted halves into a sorted whole 

 
2.  Quicksort:     Pick a “pivot” element  

     Divide elements into less-than pivot  
       and greater-than pivot 

     Sort the two divisions (recursively on each) 
     Answer is  
sorted-less-than then pivot then sorted-greater-than 
     

 Spring 2014 21 CSE373: Data Structures & Algorithms 



Merge sort 

•  To sort array from position lo to position hi: 
–  If range is 1 element long, it is already sorted! (Base case) 
–  Else:  

•  Sort from lo to (hi+lo)/2 
•  Sort from (hi+lo)/2 to hi 
•  Merge the two halves together 

•  Merging takes two sorted parts and sorts everything 
–  O(n) but requires auxiliary space… 

Spring 2014 22 CSE373: Data Structures & Algorithms 

8 2 9 4 5 3 1 6 



Example, focus on merging 

Start with:  

Spring 2014 23 CSE373: Data Structures & Algorithms 

8 2 9 4 5 3 1 6 

After recursion: 
(not magic J)   

2 4 8 9 1 3 5 6 

Merge:  
Use 3 “fingers” 
and 1 more array 

    (After merge, 
copy back to 
original array) 



Example, focus on merging 

Start with:  

Spring 2014 24 CSE373: Data Structures & Algorithms 

8 2 9 4 5 3 1 6 

After recursion: 
(not magic J)   

2 4 8 9 1 3 5 6 

Merge:  
Use 3 “fingers” 
and 1 more array 

1 

    (After merge, 
copy back to 
original array) 



Example, focus on merging 

Start with:  

Spring 2014 25 CSE373: Data Structures & Algorithms 

8 2 9 4 5 3 1 6 

After recursion: 
(not magic J)   

2 4 8 9 1 3 5 6 

Merge:  
Use 3 “fingers” 
and 1 more array 

1 2 

    (After merge, 
copy back to 
original array) 



Example, focus on merging 

Start with:  

Spring 2014 26 CSE373: Data Structures & Algorithms 

8 2 9 4 5 3 1 6 

After recursion: 
(not magic J)   

2 4 8 9 1 3 5 6 

Merge:  
Use 3 “fingers” 
and 1 more array 

1 2 3 

    (After merge, 
copy back to 
original array) 



Example, focus on merging 

Start with:  

Spring 2014 27 CSE373: Data Structures & Algorithms 

8 2 9 4 5 3 1 6 

After recursion: 
(not magic J)   

2 4 8 9 1 3 5 6 

Merge:  
Use 3 “fingers” 
and 1 more array 

1 2 3 4 

    (After merge, 
copy back to 
original array) 



Example, focus on merging 

Start with:  

Spring 2014 28 CSE373: Data Structures & Algorithms 

8 2 9 4 5 3 1 6 

After recursion: 
(not magic J)   

2 4 8 9 1 3 5 6 

Merge:  
Use 3 “fingers” 
and 1 more array 

1 2 3 4 5 

    (After merge, 
copy back to 
original array) 



Example, focus on merging 

Start with:  

Spring 2014 29 CSE373: Data Structures & Algorithms 

8 2 9 4 5 3 1 6 

After recursion: 
(not magic J)   

2 4 8 9 1 3 5 6 

Merge:  
Use 3 “fingers” 
and 1 more array 

1 2 3 4 5 6 

    (After merge, 
copy back to 
original array) 



Example, focus on merging 

Start with:  

Spring 2014 30 CSE373: Data Structures & Algorithms 

8 2 9 4 5 3 1 6 

After recursion: 
(not magic J)   

2 4 8 9 1 3 5 6 

Merge:  
Use 3 “fingers” 
and 1 more array 

1 2 3 4 5 6 8 

    (After merge, 
copy back to 
original array) 



Example, focus on merging 

Start with:  

Spring 2014 31 CSE373: Data Structures & Algorithms 

8 2 9 4 5 3 1 6 

After recursion: 
(not magic J)   

2 4 8 9 1 3 5 6 

Merge:  
Use 3 “fingers” 
and 1 more array 

1 2 3 4 5 6 8 9 

    (After merge, 
copy back to 
original array) 



Example, focus on merging 

Start with:  

Spring 2014 32 CSE373: Data Structures & Algorithms 

8 2 9 4 5 3 1 6 

After recursion: 
(not magic J)   

2 4 8 9 1 3 5 6 

Merge:  
Use 3 “fingers” 
and 1 more array 

1 2 3 4 5 6 8 9 

    (After merge, 
copy back to 
original array) 

1 2 3 4 5 6 8 9 



Example, Showing Recursion 

Spring 2014 33 CSE373: Data Structures & Algorithms 

8  2   9   4 5   3   1   6 

8   2 1   6 9   4 5   3 

8        2 

   2   8 

        2   4   8   9 

        1   2   3   4   5   6   8   9 

Merge 

Merge 

Merge 

Divide 

Divide 

Divide 

1 Element 

8 2 9 4 5 3 1 6 

9       4 5      3 1     6 

4    9   3   5   1   6 

      1   3   5   6 



Merge sort visualization 

•  http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html 

Spring 2014 34 CSE373: Data Structures & Algorithms 



Some details: saving a little time 

Spring 2014 35 CSE373: Data Structures & Algorithms 

•  What if the final steps of our merge looked like this: 

•  Wasteful to copy to the auxiliary array just to copy back… 

2 4 5 6 1 3 8 9 

1 2 3 4 5 6 

Main array 
 
 
 
 
Auxiliary array 



Some details: saving a little time 
•  If left-side finishes first, just stop the merge and copy back: 

•  If right-side finishes first, copy dregs into right then copy back 

Spring 2014 36 CSE373: Data Structures & Algorithms 

copy 

first 

second 



Some details: Saving Space and Copying 
Simplest / Worst:  

 Use a new auxiliary array of size (hi-lo) for every merge 
 
Better: 

 Use a new auxiliary array of size n for every merging stage 
 
Better: 

 Reuse same auxiliary array of size n for every merging stage 
 
Best (but a little tricky): 

 Don’t copy back – at 2nd, 4th, 6th, … merging stages, use the 
original array as the auxiliary array and vice-versa 
–  Need one copy at end if number of stages is odd 

Spring 2014 37 CSE373: Data Structures & Algorithms 



Swapping Original / Auxiliary Array (“best”) 

(Arguably easier to code up without recursion at all) 
Spring 2014 38 CSE373: Data Structures & Algorithms 

Merge by 1 
 
Merge by 2 
 
Merge by 4 
 
Merge by 8 
 
Merge by 16 
 

Copy if Needed 

•  First recurse down to lists of size 1 
•  As we return from the recursion, swap between arrays 



Linked lists and big data 
We defined sorting over an array, but sometimes you want to sort 

linked lists 
 

One approach: 
–  Convert to array: O(n) 
–  Sort: O(n log n) 
–  Convert back to list: O(n) 

Or merge sort works very nicely on linked lists directly 
–  Heapsort and quicksort do not 
–  Insertion sort and selection sort do but they’re slower 

Merge sort is also the sort of choice for external sorting 
–  Linear merges minimize disk accesses 
–  And can leverage multiple disks to get streaming accesses 

Spring 2014 39 CSE373: Data Structures & Algorithms 



Analysis 

Having defined an algorithm and argued it is correct, we should 
analyze its running time and space: 

 
To sort n elements, we: 

–  Return immediately if n=1 
–  Else do 2 subproblems of size n/2 and then an O(n) merge 

Recurrence relation: 
  T(1) = c1 

      T(n) = 2T(n/2) + c2n 

Spring 2014 40 CSE373: Data Structures & Algorithms 



Analysis intuitively 
This recurrence is common you just “know” it’s O(n log n) 
 
Merge sort is relatively easy to intuit (best, worst, and average): 
•  The recursion “tree” will have log n height 
•  At each level we do a total amount of merging equal to n 

Spring 2014 41 CSE373: Data Structures & Algorithms 



Analysis more formally  
(One of the recurrence classics) 

For simplicity let constants be 1 (no effect on asymptotic answer) 
 
T(1) = 1                                            So total is 2kT(n/2k) + kn where 

T(n) = 2T(n/2) + n                                   n/2k = 1, i.e., log n = k    
        = 2(2T(n/4) + n/2) + n               That is, 2log n T(1) + n log n 
        = 4T(n/4) + 2n                                     = n + n log n 
        = 4(2T(n/8) + n/4) + 2n                        = O(n log n) 
        = 8T(n/8) + 3n 
        …. 
        = 2kT(n/2k) + kn     

Spring 2014 42 CSE373: Data Structures & Algorithms 



Next lecture   

•  Quick sort J 

Spring 2014 43 CSE373: Data Structures & Algorithms 


