

CSE373: Data Structures and Algorithms

Lecture 2: Proof by Induction

Nicki Dell Spring 2014

Background on Induction

- Type of mathematical proof
- Typically used to establish a given statement for all natural numbers (e.g. integers > 0)
- Proof is a sequence of deductive steps
 - 1. Show the statement is true for the first number.
 - 2. Show that if the statement is true for any one number, this implies the statement is true for the next number.
 - If so, we can infer that the statement is true for all numbers.

Think about climbing a ladder

1. Show you can get to the first rung (base case)

2. Show you can get between rungs (inductive step)

3. Now you can climb forever.

Why you should care

- Induction turns out to be a useful technique
 - AVL trees
 - Heaps
 - Graph algorithms
 - Can also prove things like $3^n > n^3$ for $n \ge 4$
- Exposure to rigorous thinking

Example problem

- Find the sum of the integers from 1 to n
- 1 + 2 + 3 + 4 + ... + (n-1) + n

$$\sum_{i=1}^{n} i$$

- For any $n \ge 1$
- Could use brute force, but would be slow
- There's probably a clever shortcut

- Shortcut will be some formula involving n
- Compare examples and look for patterns
 - Not something I will ask you to do!
- Start with n = 10:

$$1+2+3+4+5+6+7+8+9+10$$

- Large enough to be a pain to add up
- Worthwhile to find shortcut

$$=5\times11$$

$$= 4 \times 10 + 5$$

$$= 4 \times 9$$

$$= 3 \times 8 + 4$$

n=7	3×8 + 4
n=8	4×9
n=9	4×10 + 5
n=10	5×11

n=7	3×8 + 4	n is odd
n=8	4×9	n is even
n=9	4×10 + 5	n is odd
n=10	5×11	n is even

When n is even

$$= (n/2) \times (n+1)$$

3×8 + 4	
4×9	n(n+1)/2
4×10 + 5	
5×11	n(n+1)/2

$$= ((n-1)/2) \times (n+1) + (n+1)/2$$

$$= ((n-1)/2) \times (n+1) + (n+1)/2$$

$$= ((n-1)\times(n+1) + (n+1))/2$$

$$= ((n-1)\times(n+1) + (n+1))/2$$

$$= ((n-1+1)\times(n+1))/2$$

$$= ((n-1 + 1) \times (n+1))/2$$

$$= (n (n+1))/2$$

3×8 + 4	n(n+1)/2
4×9	n(n+1)/2
4×10 + 5	n(n+1)/2
5×11	n(n+1)/2

Are we done?

- The pattern seems pretty clear
 - Is there any reason to think it changes?
- But we want something for any $n \ge 1$
- A mathematical approach is skeptical

$$n(n+1)$$

2

Are we done?

- The pattern seems pretty clear
 - Is there any reason to think it changes?
- But we want something for any $n \ge 1$
- A mathematical approach is skeptical
- All we know is n(n+1)/2 works for 7 to 10
- We must prove the formula works in all cases
 - A rigorous proof

- Prove the formula works for all cases.
- Induction proofs have four components:
- 1. The thing you want to prove, e.g., sum of integers from 1 to n = n(n+1)/2
- 2. The base case (usually "let n = 1"),
- 3. The assumption step ("assume true for n = k")
- 4. The induction step ("now let n = k + 1").

n and k are just variables!

- P(n) = sum of integers from 1 to n
- We need to do

Base case

Assumption

Induction step

prove for P(1)

assume for P(k)

show for P(k+1)

n and k are just variables!

- P(n) = sum of integers from 1 to n
- We need to do
 - Base case
 - Assumption
 - Induction step

prove for P(1)
assume for P(k)
show for P(k+1)

- What we are trying to prove: P(n) = n(n+1)/2
- Base case

$$-P(1)=1$$

$$-1(1+1)/2 = 1(2)/2 = 1(1) = 1$$

- What we are trying to prove: P(n) = n(n+1)/2
- Assume true for k: P(k) = k(k+1)/2
- Induction step:
 - Now consider P(k+1)
 - = 1 + 2 + ... + k + (k+1)

- What we are trying to prove: P(n) = n(n+1)/2
- Assume true for k: P(k) = k(k+1)/2
- Induction step:
 - Now consider P(k+1)
 - = 1 + 2 + ... + k + (k+1)
 - = k(k+1)/2 + (k+1)

- What we are trying to prove: P(n) = n(n+1)/2
- Assume true for k: P(k) = k(k+1)/2
- Induction step:
 - Now consider P(k+1)

$$= 1 + 2 + ... + k + (k+1)$$

$$= k(k+1)/2 + (k+1)$$

$$= k(k+1)/2 + 2(k+1)/2$$

- What we are trying to prove: P(n) = n(n+1)/2
- Assume true for k: P(k) = k(k+1)/2
- Induction step:
 - Now consider P(k+1)
 - = 1 + 2 + ... + k + (k+1)
 - = k(k+1)/2 + (k+1)
 - = k(k+1)/2 + 2(k+1)/2 = (k(k+1) + 2(k+1))/2

- What we are trying to prove: P(n) = n(n+1)/2
- Assume true for k: P(k) = k(k+1)/2
- Induction step:
 - Now consider P(k+1)

$$= 1 + 2 + ... + k + (k+1)$$

$$= k(k+1)/2 + (k+1)$$

$$= k(k+1)/2 + 2(k+1)/2 = (k(k+1) + 2(k+1))/2$$

$$= (k+1)(k+2)/2$$

- What we are trying to prove: P(n) = n(n+1)/2
- Assume true for k: P(k) = k(k+1)/2
- Induction step:

```
- Now consider P(k+1)
```

$$= 1 + 2 + ... + k + (k+1)$$

$$= k(k+1)/2 + (k+1)$$

$$= k(k+1)/2 + 2(k+1)/2 = (k(k+1) + 2(k+1))/2$$

$$=(k+1)(k+2)/2$$

- What we are trying to prove: P(n) = n(n+1)/2
- Assume true for k: P(k) = k(k+1)/2
- Induction step:
 - Now consider P(k+1)

$$= 1 + 2 + ... + k + (k+1)$$

$$= k(k+1)/2 + (k+1)$$

$$= k(k+1)/2 + 2(k+1)/2 = (k(k+1) + 2(k+1))/2$$

$$= (k+1)(k+2)/2 = (k+1)((k+1)+1)/2$$

- What we are trying to prove: P(n) = n(n+1)/2
- Assume true for k: P(k) = k(k+1)/2
- Induction step:
 - Now consider P(k+1)

$$= 1 + 2 + ... + k + (k+1)$$

$$= k(k+1)/2 + (k+1)$$

$$= k(k+1)/2 + 2(k+1)/2 = (k(k+1) + 2(k+1))/2$$

$$= (k+1)(k+2)/2 = (k+1)((k+1)+1)/2$$

We're done!

- P(n) = sum of integers from 1 to n
- We have shown
 - Base case
 - Assumption
 - Induction step

proved for P(1)

assumed for P(k)

proved for P(k+1)

Success: we have proved that P(n) is true for any $n \ge 1 \odot$