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Announcements 

•  Homework 4 due tonight at 11pm!! 
–  David’s office hours right after class in CSE 220 

 
•  Homework 5 out today 

–  Due May 28th 
–  As with HW4 you’re allowed to work with a partner 

•  New partner selection method? 

•  Midterm back at the end of class 
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Dijkstra’s algorithm 
•  Dijkstra’s algorithm: Compute shortest paths in a weighted graph 

with no negative weights 
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•  Initially, start node has cost 0 and all other nodes have cost ∞ 
•  At each step: 

–  Pick an unknown vertex v with the lowest “cost” 
–  Add it to the “cloud” of known vertices 
–  Update distances for nodes with edges from v 
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Correctness and Efficiency 

•  What should we do after learning an algorithm? 
–  Prove it is correct 

•  Not obvious! 
•  We will sketch the key ideas 

–  Analyze its efficiency 
•  Will do better by using a data structure we learned 

earlier! 
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Correctness: Intuition 

Rough intuition:  
 
All the “known” vertices have the correct shortest path 

–  True initially: shortest path to start node has cost 0 
–  If it stays true every time we mark a node “known”, then by 

induction this holds and eventually everything is “known” 

Key fact we need: When we mark a vertex “known” we won’t 
discover a shorter path later! 
–  This holds only because Dijkstra’s algorithm picks the node 

with the next shortest path-so-far 
–  The proof is by contradiction… 
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Correctness: The Cloud (Rough Sketch) 
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v Next shortest path from  
inside the known cloud 

w 

Better path to v?  

Source 

Suppose v is the next node to be marked known (“added to the cloud”) 
•  The best-known path to v must have only nodes “in the cloud” 

–   Else we would have picked a node closer to the cloud than v 
•  Suppose the actual shortest path to v is different 

–  It won’t use only cloud nodes, or we would know about it 
–  So it must use non-cloud nodes.   
–  Let w be the first non-cloud node on this path.   
–  The part of the path up to w is already known and must be shorter 

than the best-known path to v.  So v would not have been picked. 
–  Contradiction. 

The known 
cloud No! 



Efficiency, first approach 
Use pseudocode to determine asymptotic run-time 

–  Notice each edge is processed only once 
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dijkstra(Graph G, Node start) { 
  for each node: x.cost=infinity, x.known=false 
  start.cost = 0 
  while(not all nodes are known) { 
    b = find unknown node with smallest cost 
    b.known = true 
    for each edge (b,a) in G 
     if(!a.known) 
       if(b.cost + weight((b,a)) < a.cost){ 
         a.cost = b.cost + weight((b,a)) 
         a.path = b 
       } 
} 



Efficiency, first approach 
Use pseudocode to determine asymptotic run-time 

–  Notice each edge is processed only once 
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dijkstra(Graph G, Node start) { 
  for each node: x.cost=infinity, x.known=false 
  start.cost = 0 
  while(not all nodes are known) { 
    b = find unknown node with smallest cost 
    b.known = true 
    for each edge (b,a) in G 
     if(!a.known) 
       if(b.cost + weight((b,a)) < a.cost){ 
         a.cost = b.cost + weight((b,a)) 
         a.path = b 
       } 
} 

O(|V|) 

O(|V|2) 

O(|E|) 

O(|V|2) 



Improving asymptotic running time 

•  So far: O(|V|2) 
 

•  We had a similar “problem” with topological sort being O(|V|2) 
due to each iteration looking for the node to process next 
–  We solved it with a queue of zero-degree nodes 
–  But here we need the lowest-cost node and costs can 

change as we process edges 

•  Solution? 
–  A priority queue holding all unknown nodes, sorted by cost 
–  But must support decreaseKey operation 

•  Must maintain a reference from each node to its current 
position in the priority queue 

•  Conceptually simple, but can be a pain to code up 
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Efficiency, second approach 
Use pseudocode to determine asymptotic run-time 
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dijkstra(Graph G, Node start) { 
  for each node: x.cost=infinity, x.known=false 
  start.cost = 0 
  build-heap with all nodes 
  while(heap is not empty) { 
    b = deleteMin() 
    b.known = true 
    for each edge (b,a) in G 
     if(!a.known) 
      if(b.cost + weight((b,a)) < a.cost){ 
        decreaseKey(a,“new cost – old cost”) 
       a.path = b 

      } 
} 



Efficiency, second approach 
Use pseudocode to determine asymptotic run-time 
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dijkstra(Graph G, Node start) { 
  for each node: x.cost=infinity, x.known=false 
  start.cost = 0 
  build-heap with all nodes 
  while(heap is not empty) { 
    b = deleteMin() 
    b.known = true 
    for each edge (b,a) in G 
     if(!a.known) 
      if(b.cost + weight((b,a)) < a.cost){ 
        decreaseKey(a,“new cost – old cost”) 
       a.path = b 

      } 
} 

O(|V|) 

O(|V|log|V|) 

O(|E|log|V|) 

O(|V|log|V|+|E|log|V|) 



Dense vs. sparse again 

•  First approach: O(|V|2) 

•  Second approach: O(|V|log|V|+|E|log|V|) 

•  So which is better? 
–  Sparse: O(|V|log|V|+|E|log|V|) (if |E| > |V|, then O(|E|log|V|)) 
–  Dense: O(|V|2) 

•  But, remember these are worst-case and asymptotic 
–  Priority queue might have slightly worse constant factors 
–  On the other hand, for “normal graphs”, we might call 
decreaseKey rarely (or not percolate far), making |E|log|V| 
more like |E| 
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Done with Dijkstra’s   

•  You will implement Dijkstra’s algorithm in homework 5 J  

•  Onward….. Spanning trees! 
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Spanning Trees 

•  A simple problem: Given a connected  undirected graph G=(V,E), 
find a minimal subset of edges such that G is still connected 
–  A graph G2=(V,E2) such that G2 is connected and removing 

any edge from E2 makes G2 disconnected 
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Observations 

1.  Any solution to this problem is a tree 
–  Recall a tree does not need a root; just means acyclic 
–  For any cycle, could remove an edge and still be connected 

2.  Solution not unique unless original graph was already a tree 

3.  Problem ill-defined if original graph not connected 
–  So |E| ≥ |V|-1 

4.  A tree with |V| nodes has |V|-1 edges 
–  So every solution to the spanning tree problem has |V|-1 

edges 
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Motivation 

A spanning tree connects all the nodes with as few edges as possible 
 

•  Example: A “phone tree” so everybody gets the message and no 
unnecessary calls get made 

 

In most compelling uses, we have a weighted  undirected graph and 
we want a tree of least total cost  

•  Example: Electrical wiring for a house or clock wires on a chip 
•  Example: A road network if you cared about asphalt cost rather 

than travel time 
 

This is the minimum spanning tree problem 
–  Will do that next, after intuition from the simpler case 
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Two Approaches 

Different algorithmic approaches to the spanning-tree problem: 
 
1.  Do a graph traversal (e.g., depth-first search, but any traversal 

will do), keeping track of edges that form a tree 

2.  Iterate through edges; add to output any edge that does not 
create a cycle 
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Spanning tree via DFS 
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spanning_tree(Graph G) { 
  for each node i 
  i.marked = false 

  for some node i: f(i) 
} 
f(Node i) { 
  i.marked = true 
  for each j adjacent to i: 
   if(!j.marked) { 

      add(i,j) to output 
      f(j) // DFS 
    } 
} 
   Correctness: DFS reaches each node.  We add one edge to connect it 

 to the already visited nodes.  Order affects result, not correctness. 
 

Time: O(|E|) 



Example 

Stack 
f(1) 
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Example 

Stack 
f(1) 
f(2) 
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Example 

Stack 
f(1) 
f(2) 
f(7) 
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Output:  (1,2), (2,7) 



Example 

Stack 
f(1) 
f(2) 
f(7) 
f(5) 
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Output:  (1,2), (2,7), (7,5) 



Example 

Stack 
f(1) 
f(2) 
f(7) 
f(5) 
f(4) 
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Output:  (1,2), (2,7), (7,5), (5,4) 



Example 

Stack 
f(1) 
f(2) 
f(7) 
f(5) 
f(4) 
f(3) 
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Output:  (1,2), (2,7), (7,5), (5,4),(4,3) 



Example 

Stack 
f(1) 
f(2) 
f(7) 
f(5) 
f(4)  f(6) 
f(3) 
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Output:  (1,2), (2,7), (7,5), (5,4), (4,3), (5,6) 



Example 

Stack 
f(1) 
f(2) 
f(7) 
f(5) 
f(4)  f(6) 
f(3) 
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Output:  (1,2), (2,7), (7,5), (5,4), (4,3), (5,6) 



Second Approach 

Iterate through edges; output any edge that does not create a cycle 
 
Correctness (hand-wavy): 

–  Goal is to build an acyclic connected graph 
–  When we add an edge, it adds a vertex to the tree  

•  Else it would have created a cycle 
–  The graph is connected, so we reach all vertices 

Efficiency: 
–  Depends on how quickly you can detect cycles 
–  Reconsider after the example 
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Example 

Edges in some arbitrary order: 
  (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 

Spring 2014 28 CSE373: Data Structures & Algorithms 

1 
2 

3 

4 

5 

6 

7 

Output: 



Example 

Edges in some arbitrary order: 
  (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 
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Example 

Edges in some arbitrary order: 
  (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 
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Example 

Edges in some arbitrary order: 
  (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 
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Example 

Edges in some arbitrary order: 
  (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 
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Output: (1,2), (3,4), (5,6), (5,7)  



Example 

Edges in some arbitrary order: 
  (1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 
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Output: (1,2), (3,4), (5,6), (5,7), (1,5)  



Example 

Edges in some arbitrary order: 
  (1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 
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Output: (1,2), (3,4), (5,6), (5,7), (1,5)  



Example 

Edges in some arbitrary order: 
  (1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 
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Output: (1,2), (3,4), (5,6), (5,7), (1,5)  



Example 

Edges in some arbitrary order: 
  (1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 
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Output: (1,2), (3,4), (5,6), (5,7), (1,5), (2,3)  

Can stop once we 
have |V|-1 edges 



Cycle Detection 

•  To decide if an edge could form a cycle is O(|V|) because we 
may need to traverse all edges already in the output 

•  So overall algorithm would be O(|V||E|) 

•  But there is a faster way we know 
 
•  Use union-find! 

–  Initially, each item is in its own 1-element set 
–  Union sets when we add an edge that connects them 
–  Stop when we have one set 
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Using Disjoint-Set 

Can use a disjoint-set implementation in our spanning-tree 
algorithm to detect cycles: 

 

Invariant:  u and v are connected in output-so-far  
     iff  

        u and v in the same set 
 
•  Initially, each node is in its own set 
•  When processing edge (u,v): 

–  If  find(u) equals find(v), then do not add the edge 
–  Else add the edge and union(find(u),find(v)) 
–  O(|E|) operations that are almost O(1) amortized 
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Summary So Far 

The spanning-tree problem 
–  Add nodes to partial tree approach is O(|E|) 
–  Add acyclic edges approach is almost O(|E|) 

•  Using union-find “as a black box” 

But really want to solve the minimum-spanning-tree problem 
–  Given a weighted undirected graph, give a spanning tree of 

minimum weight 
–  Same two approaches will work with minor modifications 
–  Both will be O(|E| log |V|) 
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Minimum Spanning Tree Algorithms 

Algorithm #1 
Shortest-path is to Dijkstra’s Algorithm 

as 
Minimum Spanning Tree is to Prim’s Algorithm 

(Both based on expanding cloud of known vertices, basically using 
a priority queue instead of a DFS stack) 

 
Algorithm #2 

Kruskal’s Algorithm for Minimum Spanning Tree 
is 

Exactly our 2nd approach to spanning tree  
but process edges in cost order 
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