
CSE373: Data Structures & Algorithms

Lecture 19: Dijkstra’s algorithm and
Spanning Trees

Nicki Dell
Spring 2014

Announcements

•  Homework 4 due tonight at 11pm!!
–  David’s office hours right after class in CSE 220

•  Homework 5 out today

–  Due May 28th
–  As with HW4 you’re allowed to work with a partner

•  New partner selection method?

•  Midterm back at the end of class

Spring 2014 2 CSE373: Data Structures & Algorithms

Dijkstra’s algorithm
•  Dijkstra’s algorithm: Compute shortest paths in a weighted graph

with no negative weights

Spring 2014 3 CSE373: Data Structures & Algorithms

•  Initially, start node has cost 0 and all other nodes have cost ∞
•  At each step:

–  Pick an unknown vertex v with the lowest “cost”
–  Add it to the “cloud” of known vertices
–  Update distances for nodes with edges from v

A B

D
C

F H

E

G

0 2 4 ∞

4

1

12

∞

2 2 3

1 10 3

11

7

1

2

4

Correctness and Efficiency

•  What should we do after learning an algorithm?
–  Prove it is correct

•  Not obvious!
•  We will sketch the key ideas

–  Analyze its efficiency
•  Will do better by using a data structure we learned

earlier!

Spring 2014 4 CSE373: Data Structures & Algorithms

Correctness: Intuition

Rough intuition:

All the “known” vertices have the correct shortest path

–  True initially: shortest path to start node has cost 0
–  If it stays true every time we mark a node “known”, then by

induction this holds and eventually everything is “known”

Key fact we need: When we mark a vertex “known” we won’t
discover a shorter path later!
–  This holds only because Dijkstra’s algorithm picks the node

with the next shortest path-so-far
–  The proof is by contradiction…

Spring 2014 5 CSE373: Data Structures & Algorithms

Correctness: The Cloud (Rough Sketch)

Spring 2014 6 CSE373: Data Structures & Algorithms

v Next shortest path from
inside the known cloud

w

Better path to v?

Source

Suppose v is the next node to be marked known (“added to the cloud”)
•  The best-known path to v must have only nodes “in the cloud”

–  Else we would have picked a node closer to the cloud than v
•  Suppose the actual shortest path to v is different

–  It won’t use only cloud nodes, or we would know about it
–  So it must use non-cloud nodes.
–  Let w be the first non-cloud node on this path.
–  The part of the path up to w is already known and must be shorter

than the best-known path to v. So v would not have been picked.
–  Contradiction.

The known
cloud No!

Efficiency, first approach
Use pseudocode to determine asymptotic run-time

–  Notice each edge is processed only once

Spring 2014 7 CSE373: Data Structures & Algorithms

dijkstra(Graph G, Node start) {
 for each node: x.cost=infinity, x.known=false
 start.cost = 0
 while(not all nodes are known) {
 b = find unknown node with smallest cost
 b.known = true
 for each edge (b,a) in G
 if(!a.known)
 if(b.cost + weight((b,a)) < a.cost){
 a.cost = b.cost + weight((b,a))
 a.path = b
 }
}

Efficiency, first approach
Use pseudocode to determine asymptotic run-time

–  Notice each edge is processed only once

Spring 2014 8 CSE373: Data Structures & Algorithms

dijkstra(Graph G, Node start) {
 for each node: x.cost=infinity, x.known=false
 start.cost = 0
 while(not all nodes are known) {
 b = find unknown node with smallest cost
 b.known = true
 for each edge (b,a) in G
 if(!a.known)
 if(b.cost + weight((b,a)) < a.cost){
 a.cost = b.cost + weight((b,a))
 a.path = b
 }
}

O(|V|)

O(|V|2)

O(|E|)

O(|V|2)

Improving asymptotic running time

•  So far: O(|V|2)

•  We had a similar “problem” with topological sort being O(|V|2)
due to each iteration looking for the node to process next
–  We solved it with a queue of zero-degree nodes
–  But here we need the lowest-cost node and costs can

change as we process edges

•  Solution?
–  A priority queue holding all unknown nodes, sorted by cost
–  But must support decreaseKey operation

•  Must maintain a reference from each node to its current
position in the priority queue

•  Conceptually simple, but can be a pain to code up

Spring 2014 9 CSE373: Data Structures & Algorithms

Efficiency, second approach
Use pseudocode to determine asymptotic run-time

Spring 2014 10 CSE373: Data Structures & Algorithms

dijkstra(Graph G, Node start) {
 for each node: x.cost=infinity, x.known=false
 start.cost = 0
 build-heap with all nodes
 while(heap is not empty) {
 b = deleteMin()
 b.known = true
 for each edge (b,a) in G
 if(!a.known)
 if(b.cost + weight((b,a)) < a.cost){
 decreaseKey(a,“new cost – old cost”)
 a.path = b

 }
}

Efficiency, second approach
Use pseudocode to determine asymptotic run-time

Spring 2014 11 CSE373: Data Structures & Algorithms

dijkstra(Graph G, Node start) {
 for each node: x.cost=infinity, x.known=false
 start.cost = 0
 build-heap with all nodes
 while(heap is not empty) {
 b = deleteMin()
 b.known = true
 for each edge (b,a) in G
 if(!a.known)
 if(b.cost + weight((b,a)) < a.cost){
 decreaseKey(a,“new cost – old cost”)
 a.path = b

 }
}

O(|V|)

O(|V|log|V|)

O(|E|log|V|)

O(|V|log|V|+|E|log|V|)

Dense vs. sparse again

•  First approach: O(|V|2)

•  Second approach: O(|V|log|V|+|E|log|V|)

•  So which is better?
–  Sparse: O(|V|log|V|+|E|log|V|) (if |E| > |V|, then O(|E|log|V|))
–  Dense: O(|V|2)

•  But, remember these are worst-case and asymptotic
–  Priority queue might have slightly worse constant factors
–  On the other hand, for “normal graphs”, we might call
decreaseKey rarely (or not percolate far), making |E|log|V|
more like |E|

Spring 2014 12 CSE373: Data Structures & Algorithms

Done with Dijkstra’s

•  You will implement Dijkstra’s algorithm in homework 5 J

•  Onward….. Spanning trees!

Spring 2014 13 CSE373: Data Structures & Algorithms

Spanning Trees

•  A simple problem: Given a connected undirected graph G=(V,E),
find a minimal subset of edges such that G is still connected
–  A graph G2=(V,E2) such that G2 is connected and removing

any edge from E2 makes G2 disconnected

Spring 2014 14 CSE373: Data Structures & Algorithms

Observations

1.  Any solution to this problem is a tree
–  Recall a tree does not need a root; just means acyclic
–  For any cycle, could remove an edge and still be connected

2.  Solution not unique unless original graph was already a tree

3.  Problem ill-defined if original graph not connected
–  So |E| ≥ |V|-1

4.  A tree with |V| nodes has |V|-1 edges
–  So every solution to the spanning tree problem has |V|-1

edges

Spring 2014 15 CSE373: Data Structures & Algorithms

Motivation

A spanning tree connects all the nodes with as few edges as possible

•  Example: A “phone tree” so everybody gets the message and no
unnecessary calls get made

In most compelling uses, we have a weighted undirected graph and
we want a tree of least total cost

•  Example: Electrical wiring for a house or clock wires on a chip
•  Example: A road network if you cared about asphalt cost rather

than travel time

This is the minimum spanning tree problem
–  Will do that next, after intuition from the simpler case

Spring 2014 16 CSE373: Data Structures & Algorithms

Two Approaches

Different algorithmic approaches to the spanning-tree problem:

1.  Do a graph traversal (e.g., depth-first search, but any traversal

will do), keeping track of edges that form a tree

2.  Iterate through edges; add to output any edge that does not
create a cycle

Spring 2014 17 CSE373: Data Structures & Algorithms

Spanning tree via DFS

Spring 2014 18 CSE373: Data Structures & Algorithms

spanning_tree(Graph G) {
 for each node i
 i.marked = false

 for some node i: f(i)
}
f(Node i) {
 i.marked = true
 for each j adjacent to i:
 if(!j.marked) {

 add(i,j) to output
 f(j) // DFS
 }
}
 Correctness: DFS reaches each node. We add one edge to connect it

 to the already visited nodes. Order affects result, not correctness.

Time: O(|E|)

Example

Stack
f(1)

Spring 2014 19 CSE373: Data Structures & Algorithms

1
2

3

4

5

6

7

Output:

Example

Stack
f(1)
f(2)

Spring 2014 20 CSE373: Data Structures & Algorithms

1
2

3

4

5

6

7

Output: (1,2)

Example

Stack
f(1)
f(2)
f(7)

Spring 2014 21 CSE373: Data Structures & Algorithms

1
2

3

4

5

6

7

Output: (1,2), (2,7)

Example

Stack
f(1)
f(2)
f(7)
f(5)

Spring 2014 22 CSE373: Data Structures & Algorithms

1
2

3

4

5

6

7

Output: (1,2), (2,7), (7,5)

Example

Stack
f(1)
f(2)
f(7)
f(5)
f(4)

Spring 2014 23 CSE373: Data Structures & Algorithms

1
2

3

4

5

6

7

Output: (1,2), (2,7), (7,5), (5,4)

Example

Stack
f(1)
f(2)
f(7)
f(5)
f(4)
f(3)

Spring 2014 24 CSE373: Data Structures & Algorithms

1
2

3

4

5

6

7

Output: (1,2), (2,7), (7,5), (5,4),(4,3)

Example

Stack
f(1)
f(2)
f(7)
f(5)
f(4) f(6)
f(3)

Spring 2014 25 CSE373: Data Structures & Algorithms

1
2

3

4

5

6

7

Output: (1,2), (2,7), (7,5), (5,4), (4,3), (5,6)

Example

Stack
f(1)
f(2)
f(7)
f(5)
f(4) f(6)
f(3)

Spring 2014 26 CSE373: Data Structures & Algorithms

1
2

3

4

5

6

7

Output: (1,2), (2,7), (7,5), (5,4), (4,3), (5,6)

Second Approach

Iterate through edges; output any edge that does not create a cycle

Correctness (hand-wavy):

–  Goal is to build an acyclic connected graph
–  When we add an edge, it adds a vertex to the tree

•  Else it would have created a cycle
–  The graph is connected, so we reach all vertices

Efficiency:
–  Depends on how quickly you can detect cycles
–  Reconsider after the example

Spring 2014 27 CSE373: Data Structures & Algorithms

Example

Edges in some arbitrary order:
 (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Spring 2014 28 CSE373: Data Structures & Algorithms

1
2

3

4

5

6

7

Output:

Example

Edges in some arbitrary order:
 (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Spring 2014 29 CSE373: Data Structures & Algorithms

1
2

3

4

5

6

7

Output: (1,2)

Example

Edges in some arbitrary order:
 (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Spring 2014 30 CSE373: Data Structures & Algorithms

1
2

3

4

5

6

7

Output: (1,2), (3,4)

Example

Edges in some arbitrary order:
 (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Spring 2014 31 CSE373: Data Structures & Algorithms

1
2

3

4

5

6

7

Output: (1,2), (3,4), (5,6),

Example

Edges in some arbitrary order:
 (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Spring 2014 32 CSE373: Data Structures & Algorithms

1
2

3

4

5

6

7

Output: (1,2), (3,4), (5,6), (5,7)

Example

Edges in some arbitrary order:
 (1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Spring 2014 33 CSE373: Data Structures & Algorithms

1
2

3

4

5

6

7

Output: (1,2), (3,4), (5,6), (5,7), (1,5)

Example

Edges in some arbitrary order:
 (1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Spring 2014 34 CSE373: Data Structures & Algorithms

1
2

3

4

5

6

7

Output: (1,2), (3,4), (5,6), (5,7), (1,5)

Example

Edges in some arbitrary order:
 (1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Spring 2014 35 CSE373: Data Structures & Algorithms

1
2

3

4

5

6

7

Output: (1,2), (3,4), (5,6), (5,7), (1,5)

Example

Edges in some arbitrary order:
 (1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Spring 2014 36 CSE373: Data Structures & Algorithms

1
2

3

4

5

6

7

Output: (1,2), (3,4), (5,6), (5,7), (1,5), (2,3)

Can stop once we
have |V|-1 edges

Cycle Detection

•  To decide if an edge could form a cycle is O(|V|) because we
may need to traverse all edges already in the output

•  So overall algorithm would be O(|V||E|)

•  But there is a faster way we know

•  Use union-find!

–  Initially, each item is in its own 1-element set
–  Union sets when we add an edge that connects them
–  Stop when we have one set

Spring 2014 37 CSE373: Data Structures & Algorithms

Using Disjoint-Set

Can use a disjoint-set implementation in our spanning-tree
algorithm to detect cycles:

Invariant: u and v are connected in output-so-far
 iff

 u and v in the same set

•  Initially, each node is in its own set
•  When processing edge (u,v):

–  If find(u) equals find(v), then do not add the edge
–  Else add the edge and union(find(u),find(v))
–  O(|E|) operations that are almost O(1) amortized

Spring 2014 38 CSE373: Data Structures & Algorithms

Summary So Far

The spanning-tree problem
–  Add nodes to partial tree approach is O(|E|)
–  Add acyclic edges approach is almost O(|E|)

•  Using union-find “as a black box”

But really want to solve the minimum-spanning-tree problem
–  Given a weighted undirected graph, give a spanning tree of

minimum weight
–  Same two approaches will work with minor modifications
–  Both will be O(|E| log |V|)

Spring 2014 39 CSE373: Data Structures & Algorithms

Minimum Spanning Tree Algorithms

Algorithm #1
Shortest-path is to Dijkstra’s Algorithm

as
Minimum Spanning Tree is to Prim’s Algorithm

(Both based on expanding cloud of known vertices, basically using
a priority queue instead of a DFS stack)

Algorithm #2

Kruskal’s Algorithm for Minimum Spanning Tree
is

Exactly our 2nd approach to spanning tree
but process edges in cost order

Spring 2014 40 CSE373: Data Structures & Algorithms

