
CSE373: Data Structures & Algorithms

Lecture 15: Introduction to Graphs

Nicki Dell
Spring 2014

Announcements

•  Homework 4 is out
–  Implementing hash tables and hash functions
–  Due Wednesday May 14th at 11pm
–  Allowed to work with a partner

•  Midterm next Friday in-class

Spring 2014 2 CSE373: Data Structures & Algorithms

Midterm, in-class Friday May 9th

•  In class, closed notes, closed book.

•  Covers everything up to and including hashing.

–  Stacks, queues
–  Induction
–  Asymptotic analysis and Big-Oh
–  Dictionaries, BSTs, AVL Trees
–  Binary heaps and Priority Queues
–  Disjoint sets and Union-Find
–  Hash Tables and Collisions

•  Information, sample past exams and solutions posted online.

Spring 2014 3 CSE373: Data Structures & Algorithms

Graphs

•  A graph is a formalism for representing relationships among items
–  Very general definition because very general concept

•  A graph is a pair
 G = (V,E)

–  A set of vertices, also known as nodes
 V = {v1,v2,…,vn}

–  A set of edges
 E = {e1,e2,…,em}

•  Each edge ei is a pair of vertices
 (vj,vk)

•  An edge “connects” the vertices

•  Graphs can be directed or undirected

Spring 2014 4 CSE373: Data Structures & Algorithms

Han

Leia

Luke

V = {Han,Leia,Luke}
E = {(Luke,Leia),
 (Han,Leia),
 (Leia,Han)}

Undirected Graphs

•  In undirected graphs, edges have no specific direction
–  Edges are always “two-way”

Spring 2014 5 CSE373: Data Structures & Algorithms

•  Thus, (u,v) ∈ E implies (v,u) ∈ E
–  Only one of these edges needs to be in the set
–  The other is implicit, so normalize how you check for it

•  Degree of a vertex: number of edges containing that vertex
–  Put another way: the number of adjacent vertices

A

B

C

D

Directed Graphs

•  In directed graphs (sometimes called digraphs), edges have a
direction

Spring 2014 6 CSE373: Data Structures & Algorithms

•  Thus, (u,v) ∈ E does not imply (v,u) ∈ E.
•  Let (u,v) ∈ E mean u → v
•  Call u the source and v the destination

•  In-degree of a vertex: number of in-bound edges,
i.e., edges where the vertex is the destination

•  Out-degree of a vertex: number of out-bound edges
i.e., edges where the vertex is the source

or

2 edges here

A

B

C

D A

B

C

Self-Edges, Connectedness

•  A self-edge a.k.a. a loop is an edge of the form (u,u)
–  Depending on the use/algorithm, a graph may have:

•  No self edges
•  Some self edges
•  All self edges (often therefore implicit, but we will be explicit)

•  A node can have a degree / in-degree / out-degree of zero

•  A graph does not have to be connected
–  Even if every node has non-zero degree

Spring 2014 7 CSE373: Data Structures & Algorithms

More notation

For a graph G = (V,E):

•  |V| is the number of vertices
•  |E| is the number of edges

–  Minimum?
–  Maximum for undirected?
–  Maximum for directed?

•  If (u,v) ∈ E
–  Then v is a neighbor of u, i.e., v is adjacent to u
–  Order matters for directed edges

• u is not adjacent to v unless (v,u) ∈ E

Spring 2014 8 CSE373: Data Structures & Algorithms

A

B

C

D V = {A, B, C, D}
E = {(C, B),
 (A, B),
 (B, A)
 (C, D)}

0
|V||V+1|/2 ∈ O(|V|2)

 |V|2 ∈ O(|V|2)
(assuming self-edges allowed, else subtract |V|)

Examples

Which would use directed edges? Which would have self-edges?
Which would be connected? Which could have 0-degree nodes?

1.  Web pages with links
2.  Facebook friends
3.  Methods in a program that call each other
4.  Road maps (e.g., Google maps)
5.  Airline routes
6.  Family trees
7.  Course pre-requisites

Spring 2014 9 CSE373: Data Structures & Algorithms

Weighted Graphs
•  In a weighed graph, each edge has a weight a.k.a. cost

–  Typically numeric (most examples use ints)
–  Orthogonal to whether graph is directed
–  Some graphs allow negative weights; many do not

Spring 2014 10 CSE373: Data Structures & Algorithms

20

30

35

60

Mukilteo

Edmonds

Seattle

Bremerton

Bainbridge

Kingston

Clinton

Examples

What, if anything, might weights represent for each of these?
Do negative weights make sense?

•  Web pages with links
•  Facebook friends
•  Methods in a program that call each other
•  Road maps (e.g., Google maps)
•  Airline routes
•  Family trees
•  Course pre-requisites

Spring 2014 11 CSE373: Data Structures & Algorithms

Paths and Cycles

•  A path is a list of vertices [v0,v1,…,vn] such that (vi,vi+1)∈
E for all 0 ≤ i < n. Say “a path from v0 to vn”

•  A cycle is a path that begins and ends at the same node (v0==vn)

Spring 2014 12 CSE373: Data Structures & Algorithms

Seattle

San Francisco
Dallas

Chicago

Salt Lake City

Example: [Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]

Path Length and Cost
•  Path length: Number of edges in a path
•  Path cost: Sum of weights of edges in a path

Example where
P= [Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]

Spring 2014 13 CSE373: Data Structures & Algorithms

Chicago
Seattle

San Francisco Dallas

Salt Lake City

3.5

2 2

2.5

3

2
2.5

2.5

length(P) =
 cost(P) =

5
11.5

Simple Paths and Cycles

•  A simple path repeats no vertices, except the first might be the
last
[Seattle, Salt Lake City, San Francisco, Dallas]
[Seattle, Salt Lake City, San Francisco, Dallas, Seattle]

•  Recall, a cycle is a path that ends where it begins

[Seattle, Salt Lake City, San Francisco, Dallas, Seattle]
[Seattle, Salt Lake City, Seattle, Dallas, Seattle]

•  A simple cycle is a cycle and a simple path

[Seattle, Salt Lake City, San Francisco, Dallas, Seattle]

Spring 2014 14 CSE373: Data Structures & Algorithms

Paths and Cycles in Directed Graphs

Example:

Is there a path from A to D?

Does the graph contain any cycles?

Spring 2014 15 CSE373: Data Structures & Algorithms

A

B

C

D

No

No

Undirected-Graph Connectivity

•  An undirected graph is connected if for all
pairs of vertices u,v, there exists a path from u to v

•  An undirected graph is complete, a.k.a. fully connected if for all
pairs of vertices u,v, there exists an edge from u to v

Spring 2014 16 CSE373: Data Structures & Algorithms

Connected graph Disconnected graph

plus self edges

Directed-Graph Connectivity

•  A directed graph is strongly connected if
there is a path from every vertex to every
other vertex

•  A directed graph is weakly connected if
there is a path from every vertex to every
other vertex ignoring direction of edges

•  A complete a.k.a. fully connected directed
graph has an edge from every vertex to
every other vertex

Spring 2014 17 CSE373: Data Structures & Algorithms

plus self edges

Trees as Graphs

When talking about graphs,
we say a tree is a graph that is:

–  Undirected
–  Acyclic
–  Connected

So all trees are graphs, but not
all graphs are trees

Spring 2014 18 CSE373: Data Structures & Algorithms

Rooted Trees
•  We are more accustomed to rooted trees where:

–  We identify a unique root
–  We think of edges as directed: parent to children

•  Given a tree, picking a root gives a unique rooted tree
–  The tree is just drawn differently

Spring 2014 19 CSE373: Data Structures & Algorithms

A

B

D E

C

F

H G

redrawn
A

B

D E

C

F

H G

Rooted Trees
•  We are more accustomed to rooted trees where:

–  We identify a unique root
–  We think of edges as directed: parent to children

•  Given a tree, picking a root gives a unique rooted tree
–  The tree is just drawn differently

Spring 2014 20 CSE373: Data Structures & Algorithms

A

B

D E

C

F

H G

redrawn

F

G H C

A

B

D E

Directed Acyclic Graphs (DAGs)
•  A DAG is a directed graph with no (directed) cycles

–  Every rooted directed tree is a DAG
–  But not every DAG is a rooted directed tree

–  Every DAG is a directed graph
–  But not every directed graph is a DAG

Spring 2014 21 CSE373: Data Structures & Algorithms

Examples

Which of our directed-graph examples do you expect to be a DAG?

•  Web pages with links
•  Methods in a program that call each other
•  Airline routes
•  Family trees
•  Course pre-requisites

Spring 2014 22 CSE373: Data Structures & Algorithms

Density / Sparsity

•  Recall: In an undirected graph, 0 ≤ |E| < |V|2

•  Recall: In a directed graph: 0 ≤ |E| ≤ |V|2

•  So for any graph, O(|E|+|V|2) is O(|V|2)

•  Another fact: If an undirected graph is connected, then |V|-1 ≤ |E|

•  Because |E| is often much smaller than its maximum size, we do not
always approximate |E| as O(|V|2)
–  This is a correct bound, it just is often not tight
–  If it is tight, i.e., |E| is Θ(|V|2) we say the graph is dense

•  More sloppily, dense means “lots of edges”
–  If |E| is O(|V|) we say the graph is sparse

•  More sloppily, sparse means “most possible edges missing”

Spring 2014 23 CSE373: Data Structures & Algorithms

What is the Data Structure?

•  So graphs are really useful for lots of data and questions
–  For example, “what’s the lowest-cost path from x to y”

•  But we need a data structure that represents graphs

•  The “best one” can depend on:
–  Properties of the graph (e.g., dense versus sparse)
–  The common queries (e.g., “is (u,v) an edge?” versus

“what are the neighbors of node u?”)

•  So we’ll discuss the two standard graph representations
–  Adjacency Matrix and Adjacency List
–  Different trade-offs, particularly time versus space

Spring 2014 24 CSE373: Data Structures & Algorithms

Adjacency Matrix

•  Assign each node a number from 0 to |V|-1
•  A |V| x |V| matrix (i.e., 2-D array) of Booleans (or 1 vs. 0)

–  If M is the matrix, then M[u][v] being true
means there is an edge from u to v

Spring 2014 25 CSE373: Data Structures & Algorithms

A(0)

B(1)

C(2)

D(3)

0 1 2

0

1

2

3

3

T

T

T T

F F F

F F F

F F

F F F F

Adjacency Matrix Properties

•  Running time to:
–  Get a vertex’s out-edges:
–  Get a vertex’s in-edges:
–  Decide if some edge exists:
–  Insert an edge:
–  Delete an edge:

•  Space requirements:
–  |V|2 bits

•  Best for sparse or dense graphs?
–  Best for dense graphs

Spring 2014 CSE373: Data Structures & Algorithms 26

0 1 2

0

1

2

3

3

T

T

T T

F F F

F F F

F F

F F F F

O(|V|)
O(|V|)
O(1)

O(1)
O(1)

Adjacency Matrix Properties

•  How will the adjacency matrix vary for an undirected graph?
–  Undirected will be symmetric around the diagonal

•  How can we adapt the representation for weighted graphs?
–  Instead of a Boolean, store a number in each cell
–  Need some value to represent ‘not an edge’

•  In some situations, 0 or -1 works

Spring 2014 CSE373: Data Structures & Algorithms 27

Adjacency List

•  Assign each node a number from 0 to |V|-1
•  An array of length |V| in which each entry stores a list of all

adjacent vertices (e.g., linked list)

Spring 2014 28 CSE373: Data Structures & Algorithms

0

1

2

3

1 /

0 /

3 1 /

/

A(0)

B(1)

C(2)

D(3)

Adjacency List Properties

•  Running time to:
–  Get all of a vertex’s out-edges:

 O(d) where d is out-degree of vertex
–  Get all of a vertex’s in-edges:

 O(|E|) (but could keep a second adjacency list for this!)
–  Decide if some edge exists:

 O(d) where d is out-degree of source
–  Insert an edge:
 O(1) (unless you need to check if it’s there)
–  Delete an edge:
 O(d) where d is out-degree of source

•  Space requirements:
–  O(|V|+|E|)

 Spring 2014 CSE373: Data Structures & Algorithms 29

0

1

2

3

1 /

0 /

3 1 /

/

•  Good for sparse graphs

Next…

Okay, we can represent graphs

Next lecture we’ll implement some useful and non-trivial algorithms

•  Topological sort: Given a DAG, order all the vertices so that
every vertex comes before all of its neighbors

•  Shortest paths: Find the shortest or lowest-cost path from x to y
–  Related: Determine if there even is such a path

Spring 2014 30 CSE373: Data Structures & Algorithms

