CSE373: Data Structures & Algorithms
Lecture 11: Implementing Union-Find

Nicki Dell
Spring 2014

Announcements

« Homework 3 due in ONE week...Wednesday April 30!

* TA sessions

— Thursday: Disjoint sets and union-find ADT
— Next Tuesday: Extra help with homework 3

* Nicki away next week on Monday and Wednesday
— Aaron Bauer will teach you about hashing

Spring 2014 CSE373: Data Structures & Algorithms

The plan

Last lecture:

« Disjoint sets
« The union-find ADT for disjoint sets

Today’s lecture:

« Basic implementation of the union-find ADT with “up trees”
« Optimizations that make the implementation much faster

Spring 2014 CSE373: Data Structures & Algorithms

Union-Find ADT

« Given an unchanging set S, create an initial partition of a set
— Typically each item in its own subset: {a}, {b}, {c}, ...

— Give each subset a “name” by choosing a representative
element

» QOperation £ind takes an element of S and returns the
representative element of the subset it is in

* Operation union takes two subsets and (permanently) makes
one larger subset

— A different partition with one fewer set
— Affects result of subsequent £ind operations
— Choice of representative element up to implementation

Spring 2014 CSE373: Data Structures & Algorithms

Implementation — our goal

« Start with an initial partition of n subsets
— Often 1-element sets, e.g., {1}, {2}, {3}, ..., {n}

« May have m £ind operations

 May have up to n-1 union operations in any order
— After n-1 union operations, every £ind returns same 1 set

Spring 2014 CSE373: Data Structures & Algorithms

Up-tree data structure

 Tree with:
— No limit on branching factor
— References from children to parent

o Start with forest of 1-node trees

ONONBOROBONBONC

 Possible forest after several unions:

— Will use roots for (1) (3) (7)

set names / \
\@ %3 @
(&

Spring 2014 CSE373: Data Structures & Algorithms

Find

find(x):
— Assume we have O(1) access to each node
« Will use an array where index i holds node i
— Start at x and follow parent pointers to root
— Return the root

@ ® (7)

ctackt) =7 VAN
> @ @

B

Spring 2014 CSE373: Data Structures & Algorithms

Union

union(x,y):
— Assume x and y are roots
» Else £ind the roots of their trees
— Assume distinct trees (else do nothing)
— Change root of one to have parent be the root of the other
» Notice no limit on branching factor

S
(D €) (D)

S
®)

union(1,7)

Spring 2014 CSE373: Data Structures & Algorithms

Simple implementation

» |f set elements are contiguous numbers (e.g., 1,2,...,n), use an
array of length n called up

— Starting at index 1 on slides
— Put in array index of parent, with O (or -1, etc.) for a root

 Example: 1 2 3 45 6 7
DD@D®E®®D w [0]0]0]o]o]o]o
 Example:

@ @ o 12 3 45 6 7

{
(5 @
= (&

If set elements are not contiguous numbers, could have a
separate dictionary to map elements (keys) to numbers (values)

Spring 2014 CSE373: Data Structures & Algorithms 9

Implement operations

// assumes x in range 1l,n // assumes x,y are roots
int find(int x) { void union(int x, int y) {
while (up[x] !'= 0) { uply]l = x;
x = up[x]; }

}

return x;

@ & (7

(2) & @ o lo[1]o]7][7]5]0
O

* Worst-case run-time for union? (1)
 Worst-case run-time for £ind? O(n)
« Worst-case run-time for m £inds and n-1 unions? (O(m¥*n)

}

Spring 2014 CSE373: Data Structures & Algorithms 10

Two key optimizations

1. Improve union so it stays O(7) but makes £ind O(log n)
— Som £inds and n-1 unionsis O(m log n + n)
— Union-by-size: connect smaller tree to larger tree

2. Improve £ind so it becomes even faster
— Make m £inds and n-1 unions almost O(m + n)
— Path-compression: connect directly to root during finds

Spring 2014 CSE373: Data Structures & Algorithms 11

The bad case to avoid

@ @ ® -~ O
@ @ @ union(2,1)

6' /@ @ unio.n(3,2)

@
6' /'@ union(n,n-1)

/@

@

@{ £ind(1) = n steps!!

Spring 2014 CSE373: Data Structures & Algorithms 12

Union-by-size

Union-by-size:
— Always point the smaller (total # of nodes) tree to the root of
the larger tree

union(1,7)

, @ & 4
o g
O,

Spring 2014 CSE373: Data Structures & Algorithms 13

Union-by-size

Union-by-size:
— Always point the smaller (total # of nodes) tree to the root of
the larger tree

union(1,7)
(©) 6
L /
(2 /C@ @
(&

Spring 2014 CSE373: Data Structures & Algorithms 14

Array implementation

Keep the size (number of nodes in a second array)
— Or have one array of objects with two fields

\ 123 4567

(4) up|0]1]0[7[7]5]|0

(2) @ weight | 2| |1 4
~

Q\f@ 65 123 4567

(4) up|7]1/0|7[7[5]|0

(2) @ weight 1 6

Spring 2014 CSE373: Data Structures & Algorithms 15

Nifty trick

Actually we do not need a second array...
— Instead of storing O for a root, store negation of size
— So up value < 0 means a root

26%1@4;68 123456 7
(4) up |-2|11]-1|7|7|5]|-4
@
©,
Q\f@G 1 23456 7
(4) up [7[1]-1]7]7|5]|-6
@

(6)

Spring 2014 CSE373: Data Structures & Algorithms 16

The Bad case? Now a Great case...

@ @ B (n) union(2,1)
@ @ @ union(3,2)

6 /@»}@ () unio.n(n,n-'l)

@

6' @% find(1) constant here

Spring 2014 CSE373: Data Structures & Algorithms 17

General analysis

« Showing one worst-case example is now good is not a proof
that the worst-case has improved

* So let’s prove:
— union is still O(1) — this is “obvious”
— findis now O(log n)

« Claim: If we use union-by-size, an up-tree of height h has at
least 2h nodes

— Proof by induction on h...

Spring 2014 CSE373: Data Structures & Algorithms

18

Exponential number of nodes

P(h)= With union-by-size, up-tree of height h has at least 2N nodes

Proof by induction on h...

 Base case: h =0: The up-tree has 1 node and 20= 1
* Inductive case: Assume P(h) and show P(h+1)
— A height h+1 tree T has at least one height h child T1
— T1 has at least 2/ nodes by induction
— And T has at least as many nodes not in T1 than in T1
» Else union-by-size would have T
had T pointto T1, not T1 pointto T (!!)

— So total number of nodes is at least 2/ + 2/1= 2h1*1

Spring 2014 CSE373: Data Structures & Algorithms

19

— > A

The key idea

Intuition behind the proof: No one child can have more than half the

nodes
T

— > A

So, as usual, if number of nodes is exponential in height,
then height is logarithmic in number of nodes

So £ind is O(log n)

Spring 2014 CSE373: Data Structures & Algorithms 20

The new worst case

n/2 Unions-by-size

58888888

QS}@ QS}@ QS}@ QS}@

Spring 2014 CSE373: Data Structures & Algorithms

21

The new worst case (continued)

After n/2 + n/4 + ...+ 1 Unions-by-size:
e
O

Height grows by 1 a total of 1og n times find

Spring 2014 CSE373: Data Structures & Algorithms 22

What about union-by-height

We could store the height of each root rather than size

« Still guarantees logarithmic worst-case find
— Proof left as an exercise if interested

« But does not work well with our next optimization

— Maintaining height becomes inefficient, but maintaining size
still easy

Spring 2014 CSE373: Data Structures & Algorithms 23

Two key optimizations

1. Improve union so it stays O(7) but makes £ind O(log n)
— Som £inds and n-1 unionsis O(m logn + n)
— Union-by-size: connect smaller tree to larger tree

2. Improve £ind so it becomes even faster

— Make m £inds and n-1 unions almost O(m + n)
— Path-compression: connect directly to root during finds

Spring 2014 CSE373: Data Structures & Algorithms 24

Path compression

« Simple idea: As part of a £ind, change each encountered
node’s parent to point directly to root

— Faster future £inds for everything on the path (and their
descendants)

@/@
@-.
@ﬁ
@/@
)

©
@y
>

Spring 2014 CSE373: Data Structures & Algorithms 25

Pseudocode

// performs path compression

int find (i) {
// f£find root

int r = 1
while (up[r] > 0)
r = up[r]

// compress path
if i==r
return r;
int old parent = up[i]
while (old parent != r) {
up[i] = r
i = old parent;
old parent = up[i]
}

return r;

old parent=6

up[3]=7
i=6
old parent=5

up[6]=7)§:>
i=5
old parent=7 @

So, how fast is it?

A single worst-case £ind could be O(1og n)
— But only if we did a lot of worst-case unions beforehand
— And path compression will make future finds faster

Turns out the amortized worst-case bound is much better than O(1og n)
— We won't prove it — see text if curious
— But we will understand it:
* How itis almost O(1)
» Because total for m £inds and n-1 unions is almost O(m+n)

Spring 2014 CSE373: Data Structures & Algorithms 27

A really slow-growing function

log* x is the minimum number of times you need to apply “1log of
log of log of” to go from x to a number <=1

For just about every number we care about, log* xis 5 (!)
If x <= 269936 then 10g* x <= 5

— log*2 =1

— log* 4 =log* 22 =2

— log* 16 = log* 2% = 3 (log log log 16 = 1)

— log* 65536 = log* 2@ =4 (log log log log 65536 = 1)
— log* 269936 = =5

Spring 2014 CSE373: Data Structures & Algorithms 28

Almost linear

Turns out total time for m £inds and n-1 unions is
O((m+n)*(1og* (m+n))
— Remember, if m+n < 265536 then log* (m+n) <5
so effectively we have O(m+n)
Because log* grows soooo slowly

— For all practical purposes, amortized bound is constant, i.e.,
cost of find is constant, total cost for m finds is linear

— We say “near linear” or “effectively linear”
Need union-by-size and path-compression for this bound

— Path-compression changes height but not weight, so they
interact well

As always, asymptotic analysis is separate from “coding it up”

Spring 2014 CSE373: Data Structures & Algorithms 29

