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Registration 

•  We have 140 students registered and 140+ on the wait list! 
•  If you’re thinking of dropping the course please decide soon! 
 
Wait listed students 
•  If you don’t absolutely have to take the course this quarter, it’s 

unlikely you’ll get in. 
•  If you think you absolutely have to take the course this quarter, 

speak to the CSE undergraduate advisors. They will decide who 
gets added to the course. 

•  UW Employees, Auditors, etc.  
 
I will not make individual decisions about registration!  
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Welcome! 

We have 10 weeks to learn fundamental data structures and 
algorithms for organizing and processing information 
–  “Classic” data structures / algorithms  
–  How to rigorously analyze their efficiency  
–  How to decide when to use them 
–  Queues, dictionaries, graphs, sorting, etc. 

Today in class: 
•  Introductions and course mechanics 
•  What this course is about 
•  Start abstract data types (ADTs), stacks, and queues 

–  Largely review 
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To-do list 

In next 24-48 hours: 
•  Adjust class email-list settings 
•  Read all course policies 
•  Read Chapters 3.1, 3.6 and 3.7 of Weiss book 

–  Relevant to Homework 1, due next week 
 

•  Set up your Java environment for Homework 1 

http://courses.cs.washington.edu/courses/cse373/14sp/ 
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Course staff 
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Office hours, email, etc. on course web-page 

Nicki Dell 
5th year CSE PhD grad student (loves teaching!) 
Works with Gaetano Borriello and the Change Group 
Fun fact: Grew up in Zimbabwe. 



Communication 

•  Course email list: cse373a_sp14@u.washington.edu 
–  Students and staff already subscribed 
–  You must get announcements sent there 
–  Fairly low traffic 

•  Course staff: cse373-staff@cs.washington.edu plus 
individual emails 

•  Discussion board 
–  For appropriate discussions; TAs will monitor 
–  Encouraged, but won’t use for important announcements 

•  Anonymous feedback link 
–  For good and bad: if you don’t tell me, I don’t know 
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Course meetings 

•  Lecture (Nicki) 
–  Materials posted, but take notes 
–  Ask questions, focus on key ideas (rarely coding details) 

•  Optional sections on Tuesday/Thursday afternoons 
–  Will post rough agenda a few days in advance 
–  Help on programming/tool background 
–  Helpful math review and example problems 
–  Again, optional but helpful 
–  May cancel some later in course (experimental) 

•  Office hours 
–  Use them: please visit me 
–  Ideally not just for homework questions (but that’s great too) 
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Course materials 

•  All lecture and section materials will be posted 
–  But they are visual aids, not always a complete description! 
–  If you have to miss, find out what you missed 

•  Textbook: Weiss 3rd Edition in Java 

•  A good Java reference of your choosing 
–  Don’t struggle Googling for features you don’t understand 
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Computer Lab 

•  College of Arts & Sciences Instructional Computing Lab  
–  http://depts.washington.edu/aslab/ 
–  Or your own machine 

•  Will use Java for the programming assignments 

•  Eclipse is recommended programming environment 
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Course Work 
•  6 homeworks (60%) 

–  Most involve programming, but also written questions 
–  Higher-level concepts than “just code it up” 
–  First programming assignment due week from Wednesday 

•  Midterm Wednesday May 7, in class (15%) 
•  Final exam: Tuesday June 10, 2:30-4:20PM (25%) 
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Collaboration and Academic Integrity 

•  Read the course policy very carefully 
–  Explains quite clearly how you can and cannot get/provide 

help on homework and projects 

•  Always explain any unconventional action on your part 
–  When it happens, when you submit, not when asked 

•  I take academic integrity extremely seriously 
–  I offer great trust but with little sympathy for violations 
–  Honest work is a vital feature of a university 
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Some details 

•  You are expected to do your own work 
–  Exceptions (group work), if any, will be clearly announced 

•  Sharing solutions, doing work for, or accepting work from others 
is cheating 

•  Referring to solutions from this or other courses from previous 
quarters is cheating 

•  But you can learn from each other: see the policy 
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Advice on how to succeed in 373 

•  Get to class on time! 
–  I will start and end promptly 
–  First 2 minutes are much more important than last 2! 
–  Midterms will prove beyond any doubt you are able to do so 

•  Learn this stuff 
–  It is at the absolute core of computing and software 
–  Falling behind only makes more work for you 
 

•  Do the work and try hard 
 
•  This stuff is powerful and fascinating, so have fun with it! 
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Today in Class 

•  Course mechanics:  Did I forget anything? 

•  What this course is about 
 
•  Start abstract data types (ADTs), stacks, and queues 

–  Largely review 
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What this course will cover 

•  Introduction to Algorithm Analysis 

•  Lists, Stacks, Queues 

•  Trees, Hashing, Dictionaries  

•  Heaps, Priority Queues 

•  Sorting 

•  Disjoint Sets 

•  Graph Algorithms 

•  Introduction to Parallelism and Concurrency 
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Assumed background 

•  Prerequisite is CSE143 

•  Topics you should have a basic understanding of: 
–  Variables, conditionals, loops, methods, fundamentals of 

defining classes and inheritance, arrays, single linked lists, 
simple binary trees, recursion, some sorting and searching 
algorithms, basic algorithm analysis (e.g., O(n) vs O(n2) and 
similar things) 

•  We can fill in gaps as needed, but if any topics are new, plan on 
some extra studying 
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Goals 

•  Deeply understand the basic structures used in all software 
–  Understand the data structures and their trade-offs 
–  Rigorously analyze the algorithms that use them (math!) 
–  Learn how to pick “the right thing for the job” 
–  More thorough and rigorous take on topics introduced in  

CSE143 (plus more new topics) 

•  Practice design, analysis, and implementation 
–  The mix of “theory” and “engineering” at the core of 

computer science 

•  More programming experience (as a way to learn) 
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Goals 

•  Be able to make good design choices as a developer, project 
manager, etc. 
–  Reason in terms of the general abstractions that come up in 

all non-trivial software (and many non-software) systems 
•  Be able to justify and communicate your design decisions 

You will learn the key abstractions used almost every day in just 
about anything related to computing and software. 
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Data structures 

A data structure is a (often non-obvious) way to organize 
information to enable efficient computation over that information 

 

A data structure supports certain operations, each with a: 
–  Meaning: what does the operation do/return 
–  Performance: how efficient is the operation 

Examples: 
–  List  with operations insert and delete 
–  Stack  with operations push and pop 
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Trade-offs 

A data structure strives to provide many useful, efficient operations 
 
But there are unavoidable trade-offs: 

–  Time vs. space 
–  One operation more efficient if another less efficient 
–  Generality vs. simplicity vs. performance 

We ask ourselves questions like: 
–  Does this support the operations I need efficiently? 
–  Will it be easy to use (and reuse), implement, and debug? 
–  What assumptions am I making about how my software will 

be used? (E.g., more lookups or more inserts?) 
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Terminology 

•  Abstract Data Type (ADT) 
–  Mathematical description of a “thing” with set of operations 
–  Not concerned with implementation details 

•  Algorithm 
–  A high level, language-independent description of a step-by-

step process 

•  Data structure 
–  A specific organization of data and family of algorithms for 

implementing an ADT 

•  Implementation of a data structure 
–  A specific implementation in a specific language 
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Example: Stacks 

•  The Stack ADT supports operations: 
–  isEmpty: have there been same number of pops as pushes 
–  push: takes an item 
–  pop: raises an error if empty, else returns most-recently 

pushed item not yet returned by a pop 
–  … (possibly more operations) 

•  A Stack data structure could use a linked-list or an array or 
something else, and associated algorithms for the operations 

•  One implementation is in the library java.util.Stack 
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Why useful 

The Stack ADT is a useful abstraction because: 
•  It arises all the time in programming (e.g., see Weiss 3.6.3) 

–  Recursive function calls 
–  Balancing symbols in programming (parentheses) 
–  Evaluating postfix notation: 3 4 + 5 *  
–  Clever: Infix ((3+4) * 5) to postfix conversion (see text) 

•  We can code up a reusable library 

•  We can communicate in high-level terms 
–  “Use a stack and push numbers, popping for operators…” 
–  Rather than, “create an array and keep indices to the…” 
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The Queue ADT 

•  Operations 
 create 
 destroy 
 enqueue 
 dequeue 
 is_empty 

•  Just like a stack except: 
–  Stack: LIFO (last-in-first-out) 
–  Queue: FIFO (first-in-first-out) 

•  Just as useful and ubiquitous 
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Circular Array Queue Data Structure 

25 CSE 373 Spring 2014 

// Basic idea only! 
enqueue(x) { 
  Q[back] = x; 
  back = (back + 1) % size  
} 

// Basic idea only! 
dequeue() { 
  x = Q[front]; 
  front = (front + 1) % size; 
  return x; 
} 

b c d e f 
Q: 0 size - 1 

front back 

•  What if queue is empty? 
–  Enqueue? 
–  Dequeue? 

•  What if array is full? 
•  How to test for empty? 
•  What is the complexity of 

the operations? 
•  Can you find the kth 

element in the queue? 
  



Linked List Queue Data Structure 
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b c d e f 

front back 

// Basic idea only! 
enqueue(x) { 
  back.next = new Node(x); 
  back = back.next;  
} 

// Basic idea only! 
dequeue() { 
  x = front.item; 
  front = front.next; 
  return x; 
} 

•  What if queue is empty? 
–  Enqueue? 
–  Dequeue? 

•  Can list be full? 
•  How to test for empty? 
•  What is the complexity of 

the operations? 
•  Can you find the kth 

element in the queue? 
  



Circular Array vs. Linked List 

Array: 
–  May waste unneeded space or 

run out of space 
–  Space per element excellent 
–  Operations very simple / fast 
–  Constant-time access to kth 

element 

–  For operation insertAtPosition, 
must shift all later elements 
–  Not in Queue ADT 

List: 
–  Always just enough space 
–  But more space per element 
–  Operations very simple / fast 
–  No constant-time access to kth 

element 

–  For operation insertAtPosition 
must traverse all earlier elements 
–  Not in Queue ADT 
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This is stuff you should know after being awakened in the dark 



The Stack ADT 

Operations: 
  create 
 destroy 
 push 
 pop 
 top 
 is_empty 

Can also be implemented with an array or a linked list 
–  This is Homework 1 (which is posted)! 
–  Like queues, type of elements is irrelevant 
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