
CSE373: Data Structures and Algorithms

Lecture 1: Introduction; ADTs; Stacks/Queues

Nicki Dell
Spring 2014

Registration

•  We have 140 students registered and 140+ on the wait list!
•  If you’re thinking of dropping the course please decide soon!

Wait listed students
•  If you don’t absolutely have to take the course this quarter, it’s

unlikely you’ll get in.
•  If you think you absolutely have to take the course this quarter,

speak to the CSE undergraduate advisors. They will decide who
gets added to the course.

•  UW Employees, Auditors, etc.

I will not make individual decisions about registration!

2 CSE 373 Spring 2014

Welcome!

We have 10 weeks to learn fundamental data structures and
algorithms for organizing and processing information
–  “Classic” data structures / algorithms
–  How to rigorously analyze their efficiency
–  How to decide when to use them
–  Queues, dictionaries, graphs, sorting, etc.

Today in class:
•  Introductions and course mechanics
•  What this course is about
•  Start abstract data types (ADTs), stacks, and queues

–  Largely review

3 CSE 373 Spring 2014

To-do list

In next 24-48 hours:
•  Adjust class email-list settings
•  Read all course policies
•  Read Chapters 3.1, 3.6 and 3.7 of Weiss book

–  Relevant to Homework 1, due next week

•  Set up your Java environment for Homework 1

http://courses.cs.washington.edu/courses/cse373/14sp/

4 CSE 373 Spring 2014

Course staff

5 CSE 373 Spring 2014

Office hours, email, etc. on course web-page

Nicki Dell
5th year CSE PhD grad student (loves teaching!)
Works with Gaetano Borriello and the Change Group
Fun fact: Grew up in Zimbabwe.

Communication

•  Course email list: cse373a_sp14@u.washington.edu
–  Students and staff already subscribed
–  You must get announcements sent there
–  Fairly low traffic

•  Course staff: cse373-staff@cs.washington.edu plus
individual emails

•  Discussion board
–  For appropriate discussions; TAs will monitor
–  Encouraged, but won’t use for important announcements

•  Anonymous feedback link
–  For good and bad: if you don’t tell me, I don’t know

6 CSE 373 Spring 2014

Course meetings

•  Lecture (Nicki)
–  Materials posted, but take notes
–  Ask questions, focus on key ideas (rarely coding details)

•  Optional sections on Tuesday/Thursday afternoons
–  Will post rough agenda a few days in advance
–  Help on programming/tool background
–  Helpful math review and example problems
–  Again, optional but helpful
–  May cancel some later in course (experimental)

•  Office hours
–  Use them: please visit me
–  Ideally not just for homework questions (but that’s great too)

7 CSE 373 Spring 2014

Course materials

•  All lecture and section materials will be posted
–  But they are visual aids, not always a complete description!
–  If you have to miss, find out what you missed

•  Textbook: Weiss 3rd Edition in Java

•  A good Java reference of your choosing
–  Don’t struggle Googling for features you don’t understand

8 CSE 373 Spring 2014

Computer Lab

•  College of Arts & Sciences Instructional Computing Lab
–  http://depts.washington.edu/aslab/
–  Or your own machine

•  Will use Java for the programming assignments

•  Eclipse is recommended programming environment

9 CSE 373 Spring 2014

Course Work
•  6 homeworks (60%)

–  Most involve programming, but also written questions
–  Higher-level concepts than “just code it up”
–  First programming assignment due week from Wednesday

•  Midterm Wednesday May 7, in class (15%)
•  Final exam: Tuesday June 10, 2:30-4:20PM (25%)

10 CSE 373 Spring 2014

Collaboration and Academic Integrity

•  Read the course policy very carefully
–  Explains quite clearly how you can and cannot get/provide

help on homework and projects

•  Always explain any unconventional action on your part
–  When it happens, when you submit, not when asked

•  I take academic integrity extremely seriously
–  I offer great trust but with little sympathy for violations
–  Honest work is a vital feature of a university

11 CSE 373 Spring 2014

Some details

•  You are expected to do your own work
–  Exceptions (group work), if any, will be clearly announced

•  Sharing solutions, doing work for, or accepting work from others
is cheating

•  Referring to solutions from this or other courses from previous
quarters is cheating

•  But you can learn from each other: see the policy

12 CSE 373 Spring 2014

Advice on how to succeed in 373

•  Get to class on time!
–  I will start and end promptly
–  First 2 minutes are much more important than last 2!
–  Midterms will prove beyond any doubt you are able to do so

•  Learn this stuff
–  It is at the absolute core of computing and software
–  Falling behind only makes more work for you

•  Do the work and try hard

•  This stuff is powerful and fascinating, so have fun with it!

13 CSE 373 Spring 2014

Today in Class

•  Course mechanics: Did I forget anything?

•  What this course is about

•  Start abstract data types (ADTs), stacks, and queues

–  Largely review

14 CSE 373 Spring 2014

What this course will cover

•  Introduction to Algorithm Analysis

•  Lists, Stacks, Queues

•  Trees, Hashing, Dictionaries

•  Heaps, Priority Queues

•  Sorting

•  Disjoint Sets

•  Graph Algorithms

•  Introduction to Parallelism and Concurrency

15 CSE 373 Spring 2014

Assumed background

•  Prerequisite is CSE143

•  Topics you should have a basic understanding of:
–  Variables, conditionals, loops, methods, fundamentals of

defining classes and inheritance, arrays, single linked lists,
simple binary trees, recursion, some sorting and searching
algorithms, basic algorithm analysis (e.g., O(n) vs O(n2) and
similar things)

•  We can fill in gaps as needed, but if any topics are new, plan on
some extra studying

16 CSE 373 Spring 2014

Goals

•  Deeply understand the basic structures used in all software
–  Understand the data structures and their trade-offs
–  Rigorously analyze the algorithms that use them (math!)
–  Learn how to pick “the right thing for the job”
–  More thorough and rigorous take on topics introduced in

CSE143 (plus more new topics)

•  Practice design, analysis, and implementation
–  The mix of “theory” and “engineering” at the core of

computer science

•  More programming experience (as a way to learn)

17 CSE 373 Spring 2014

Goals

•  Be able to make good design choices as a developer, project
manager, etc.
–  Reason in terms of the general abstractions that come up in

all non-trivial software (and many non-software) systems
•  Be able to justify and communicate your design decisions

You will learn the key abstractions used almost every day in just
about anything related to computing and software.

18 CSE 373 Spring 2014

Data structures

A data structure is a (often non-obvious) way to organize
information to enable efficient computation over that information

A data structure supports certain operations, each with a:
–  Meaning: what does the operation do/return
–  Performance: how efficient is the operation

Examples:
–  List with operations insert and delete
–  Stack with operations push and pop

19 CSE 373 Spring 2014

Trade-offs

A data structure strives to provide many useful, efficient operations

But there are unavoidable trade-offs:

–  Time vs. space
–  One operation more efficient if another less efficient
–  Generality vs. simplicity vs. performance

We ask ourselves questions like:
–  Does this support the operations I need efficiently?
–  Will it be easy to use (and reuse), implement, and debug?
–  What assumptions am I making about how my software will

be used? (E.g., more lookups or more inserts?)

20 CSE 373 Spring 2014

Terminology

•  Abstract Data Type (ADT)
–  Mathematical description of a “thing” with set of operations
–  Not concerned with implementation details

•  Algorithm
–  A high level, language-independent description of a step-by-

step process

•  Data structure
–  A specific organization of data and family of algorithms for

implementing an ADT

•  Implementation of a data structure
–  A specific implementation in a specific language

21 CSE 373 Spring 2014

Example: Stacks

•  The Stack ADT supports operations:
–  isEmpty: have there been same number of pops as pushes
–  push: takes an item
–  pop: raises an error if empty, else returns most-recently

pushed item not yet returned by a pop
–  … (possibly more operations)

•  A Stack data structure could use a linked-list or an array or
something else, and associated algorithms for the operations

•  One implementation is in the library java.util.Stack

22 CSE 373 Spring 2014

Why useful

The Stack ADT is a useful abstraction because:
•  It arises all the time in programming (e.g., see Weiss 3.6.3)

–  Recursive function calls
–  Balancing symbols in programming (parentheses)
–  Evaluating postfix notation: 3 4 + 5 *
–  Clever: Infix ((3+4) * 5) to postfix conversion (see text)

•  We can code up a reusable library

•  We can communicate in high-level terms
–  “Use a stack and push numbers, popping for operators…”
–  Rather than, “create an array and keep indices to the…”

23 CSE 373 Spring 2014

The Queue ADT

•  Operations
 create
 destroy
 enqueue
 dequeue
 is_empty

•  Just like a stack except:
–  Stack: LIFO (last-in-first-out)
–  Queue: FIFO (first-in-first-out)

•  Just as useful and ubiquitous

24 CSE 373 Spring 2014

F E D C B enqueue dequeue G A

Back Front

Circular Array Queue Data Structure

25 CSE 373 Spring 2014

// Basic idea only!
enqueue(x) {
 Q[back] = x;
 back = (back + 1) % size
}

// Basic idea only!
dequeue() {
 x = Q[front];
 front = (front + 1) % size;
 return x;
}

b c d e f
Q: 0 size - 1

front back

•  What if queue is empty?
–  Enqueue?
–  Dequeue?

•  What if array is full?
•  How to test for empty?
•  What is the complexity of

the operations?
•  Can you find the kth

element in the queue?

Linked List Queue Data Structure

26 CSE 373 Spring 2014

b c d e f

front back

// Basic idea only!
enqueue(x) {
 back.next = new Node(x);
 back = back.next;
}

// Basic idea only!
dequeue() {
 x = front.item;
 front = front.next;
 return x;
}

•  What if queue is empty?
–  Enqueue?
–  Dequeue?

•  Can list be full?
•  How to test for empty?
•  What is the complexity of

the operations?
•  Can you find the kth

element in the queue?

Circular Array vs. Linked List

Array:
–  May waste unneeded space or

run out of space
–  Space per element excellent
–  Operations very simple / fast
–  Constant-time access to kth

element

–  For operation insertAtPosition,
must shift all later elements
–  Not in Queue ADT

List:
–  Always just enough space
–  But more space per element
–  Operations very simple / fast
–  No constant-time access to kth

element

–  For operation insertAtPosition
must traverse all earlier elements
–  Not in Queue ADT

27 CSE 373 Spring 2014

This is stuff you should know after being awakened in the dark

The Stack ADT

Operations:
 create
 destroy
 push
 pop
 top
 is_empty

Can also be implemented with an array or a linked list
–  This is Homework 1 (which is posted)!
–  Like queues, type of elements is irrelevant

28 CSE 373 Spring 2014

A

B
C
D
E
F

E D C B A

F

