
CSE 373 Midterm Review
Spring 2014 - Nicholas Shahan



Stacks LIFO - Last In First Out

Main Operations
● push - place element on the top of the stack
● pop - remove element at the top of the stack 

Runtime: push O(1) pop O(1)
Disadvantage: O(n) searches



Queues FIFO - First In First Out

Main Operations
● enqueue - place element at the back
● dequeue - remove element from the front

Runtime: enqueue O(1) dequeue O(1)
Disadvantage: O(n) searches



Binary Search Tree Dictionary

● Nodes can have two children
● Order Property

○ Child to the left is less than parent
○ Child to the right is greater than parent

Runtime: insert O(n) find O(n) 
Disadvantage: Can become unbalanced



AVL Tree Dictionary

● Nodes can have two children
● Order Property

○ Child to the left is less than parent
○ Child to the right is greater than parent

● Balance Property
○ Height of children never differs by more than 1

Runtime: insert O(logn) find O(logn) 
Trade-off: Sorted but operations not O(1)



AVL Tree Dictionary

Single Rotations - Imbalanced at:
● right-right
● left-left
Double Rotations - Imbalanced at:
● right-left
● left-right



Heaps Priority Queue

Structure property
● A complete binary tree
Heap property (Not a binary search tree)
● The priority of every (non-root) node is less important 

than the priority of its parent 
Runtime: insert O(logn) deletemin O(logn) findmin O(1)
Trade-off: Always fast access to the min but access to 
any other elements O(n)



Heaps Priority Queue

insert - place element as a new leaf and 
Percolate Up.

deletemin - remove element at the root, place 
the last leaf element at the root position and 
Percolate Down.



Heaps Priority Queue

● Imagine as a Binary Tree.
● Implement as an Array.

From node i
● left child: i*2
● right child: i*2+1
● parent: i/2



Disjoint Sets Union-Find

Main Operations
● union - join two sets together
● find - identify the set containing an element

Runtime: union O(1) 
find O(logn) a single time or O(log*) (amortized)
Trade-off: Very fast but limited operations



Disjoint Sets Union-Find

● Imagine as a forest of Up Trees.
● Implement as an Array.

● All nodes (except roots) point to their parent.
● Roots record the size of their tree.



Disjoint Sets Union-Find

Optimizations
● Union by Size - when performing a union the 

smaller tree joins the larger.
● Path Compression - during a find, after 

traversing the tree up to the root, connect all 
nodes on the path directly to the root.



Hash Tables Dictionary

Keys are “hashed” to determine which bucket 
to store the value in.

Runtime: insert O(1) find O(1) *assuming a 
good hash function and proper table size
Can be much worse O(n)
Trade-off: Operations are O(1) but unsorted



Hash Tables Dictionary

“Hash” the key: h(key) % TableSize

Collision: When two keys “hash” to the same 
bucket.

Collision Resolution: Rules used when a 
collision occurs.



Collision Resolution Hash Tables

Separate Chaining
● All buckets point to a linked list containing all the values 

in that bucket.
● With a good hash function, not as bad as it sounds 

since collisions should be rare.



Collision Resolution Hash Tables

Linear Probing
● If a bucket is occupied, use the next one. If that is 

occupied, use the next one…
● Probe Sequence:

0th probe: h(key) % TableSize
1st probe: ((h(key) + 1) % TableSize
2nd probe: ((h(key) + 2) % TableSize
3rd probe: ((h(key) + 3) % TableSize
ith probe: ((h(key) + i) % TableSize



Collision Resolution Hash Tables

Quadratic Probing
● If a bucket is occupied, look for a new location with a 

series of probes that increase quadratically
● Probe Sequence:

0th probe: (h(key) % TableSize 02=0

1st probe: ((h(key) + 1) % TableSize 12=1

2nd probe: ((h(key) + 4) % TableSize 22=4

3rd probe: ((h(key) + 9) % TableSize 32=9

ith probe: ((h(key) + i2) % TableSize



Collision Resolution Hash Tables

Double Hashing
● If a bucket is occupied, hash the key with a different 

hash function and add to the original location.
● Probe Sequence:

0th probe: h(key) % TableSize
1st probe: ((h(key) + g(key)) % TableSize
2nd probe: ((h(key) + 2*g(key)) % TableSize
3rd probe: ((h(key) + 3*g(key)) % TableSize
ith probe: ((h(key) + i*g(key)) % TableSize



You all know this already...

Test Tips
● Relax
● Read all the instructions carefully - some details are 

easy to miss (I speak from experience)
● If you feel stuck, move on and come back after 

completing some other problems.


