BST's and AVL Trees

Show the Traversals

Pre-Order: 8, 3, 1, 6, 4, 7, 10, 14, 13

In-Order: 1, 3, 4, 6, 7, 8, 10, 13, 14

Post-Order: 1, 4, 7, 6, 3, 13, 14, 10, 8

Definition of BST

- Collection of nodes that hold data
- Each node in the tree is connected to another
- A node can have no more than 2 "children"
- The left subtree of any given node will only contain data values less than the value of that node
- The right subtree of any given node will only contain data values greater than the value of that node

Description of BST Node

- Field for holding data
- Field for accessing right subtree
- Field for accessing left subtree

Definition of AVL Tree

A binary tree that is self-balancing.

Description of AVL Tree Node

- Field for holding data
- Field for accessing right subtree
- Field for accessing left subtree
- Field for keeping track of height

<u>Runtime Analysis:</u>

BST: AVL Tree:

find(): 0(N) 0(log N)

insert(): O(N) $O(\log N)$

delete() O(N) O(log N)

buildTree() O(N^2) O(N log N)

AVL Operations:

- Single Rotation
- Double Rotation

Practice Problems:

1. Is it a BST? Is it an AVL Tree? (If not, circle nodes that violate the rules of each)

BST: NO BST: NO

AVL: NO AVL: NO

2. Adding values to a BST in a certain order, what does the resulting tree look like? How about AVL?

2, 6, 8, 1, 9, 13, 7

