Minimum Spanning Trees:

Find the minimum spanning tree using both Prim's Algorithm and Kruskal's Algorithm.

Prim's

Vertex	Known?	Cost	Previous
А			
В			
С			
D			
E			
F			

Kruskal's

List out sorted edges (by weight):

List out edges in MST:

<u>Dijkstra's</u>

Use Dijkstra's Algorithm to evaluate the shortest path from A to any other node in the graph below.

Order vertices marked as known:

Vertex	Known?	Cost	Path
Α			
В			
С			
D			
E			
F			
G			
Н			

Runtimes:

Prim's: O(|E| log |V|)

Kruskal's: $O(|E| \log |E|)$ *sorting

O(|E|) *iterating through edges for union-find

Dijkstra's: $O(|E| \log |V|)$