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What is a graph?
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Graphs

e graph: A data structure containing:
= 3 set of vertices V, (sometimes called nodes) e Q

= aset of edges E, where an edge
represents a connection between 2 vertices.

e Graph G =(V, E) e @

e an edge is a pair (v, w) wherev, ware in V

e the graph at right:
= V={3,b,c, d}
" £={(a,c), (b, c), (b, d), (c, d)}

e degree: number of edges touching a given vertex.
\ = atright: a=1, b=2, c=3, d=2




Graph examples

e For each, what are the vertices and what are the edges?

Web pages with links

Methods in a program that call each other
Road maps (e.g., Google maps)

Airline routes

Facebook friends @@

Course pre-requisites @ \ ®
Family trees \ @\
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@@

Paths through a maze




Paths

e path: A path from vertex a to b is a sequence of edges that can be
followed starting from a to reach b.

" can be represented as vertices visited, or edges taken
= example, one path from Vto Z: {b, h} or {V, X, Z}
= What are two paths from U to Y?

e path length: Number of vertices
or edges contained in the path.

e neighbor or adjacent: Two vertices
connected directly by an edge.

= example: Vand X
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Reachability, connectedness

e reachable: Vertex a is reachable from b
if a path exists from a to b.

e connected: A graph is connected if every
vertex is reachable from any other.

= |s the graph at top right connected?

e strongly connected: When every vertex
has an edge to every other vertex.




Loops and cycles

e cycle: A path that begins and ends at the same node.
= example: {b, g, f,c,a}or{V,X, Y, W, U, V}
= example: {c, d, a}or {U, W, V, U}.

= acyclic graph: One that does
not contain any cycles.

e loop: An edge directly from
a node to itself.

= Many graphs don't allow loops.




Weighted graphs

e weight: Cost associated with a given edge.

= Some graphs have weighted edges, and some are unweighted.

= Edges in an unweighted graph can be thought of as having equal
weight (e.g. all 0, or all 1, etc.)

= Most graphs do not allow negative weights.

e example: graph of airline flights, weighted by miles between cities:




Directed graphs

e directed graph ("digraph"): One where edges are one-way
connections between vertices.

= |f graph is directed, a vertex has a separate in/out degree.
= Adigraph can be weighted or unweighted.
= |s the graph below connected? Why or why not?
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Digraph example

e Vertices = UW CSE courses (incomplete list)
e Edge (a, b) =ais a prerequisite for b
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Linked Lists, Trees, Graphs

e A binary tree is a graph with some restrictions:
* The tree is an unweighted, directed, acyclic graph (DAG).

= Each node's in-degree is at most 1, and out-degree is at most 2.
" There is exactly one path from the root to every node.
e Alinked list is also a graph:

= Unweighted DAG.
* |n/out degree of at most 1 for all nodes. G G
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Searching for paths

e Searching for a path from one vertex to another:

= Sometimes, we just want any path (or want to know there is a path).
= Sometimes, we want to minimize path length (# of edges).
= Sometimes, we want to minimize path cost (sum of edge weights).

e What is the shortest path from MIA to SFO?
Which path has the minimum cost?




Depth-first search

e depth-first search (DFS): Finds a path between two vertices by
exploring each possible path as far as possible before backtracking.

= Often implemented recursively.
= Many graph algorithms involve visiting or marking vertices.

e Depth-first paths from a to all vertices (assuming ABC edge order):
= to b:{a, b}
= toc:{a, b, e f c} e

(b)) Ao
= tod:{a, d} “
= toe:{a, b, e} @ e 0
= tof: {a, b, e, f} }'

. (—(

tog:{a, d, g}
" toh:{a,d, g, h}
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DFS pseudocode

function dfs(v,, v,):
dfs(v,, v,, { }).

function dfs(v,, v,, path):
path +=v,.
mark v, as visited.
if v isv,:
a path is found!

for each unvisited neighbor n of v,:
if dfs(n, v,, path) finds a path: a path is found!

path -=v,. //path is not found.

e The path param above is used if you want to have the
path available as a list once you are done.

= Trace dfs(a, f) in the above graph.
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DFS observations

e discovery: DFS is guaranteed to
find a path if one exists.

e retrieval: It is easy to retrieve exactly
what the path is (the sequence of
edges taken) if we find it

e optimality: not optimal. DFS is guaranteed to find a path, not
necessarily the best/shortest path

= Example: dfs(a, f) returns {a, d, c, f} rather than {a, d, f}.
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Breadth-first search

e breadth-first search (BFS): Finds a path between two nodes by
taking one step down all paths and then immediately backtracking.

= Often implemented by maintaining a queue of vertices to visit.

e BFS always returns the shortest path (the one with the fewest
edges) between the start and the end vertices.

= tob:{a, b}

= toc:{a, e, f, c} 0 Q G
= tod:{a,d} ‘ ‘
= toe:({a, e} Q e °

= tof: {a, e, f} ‘
(—(

" tog:{a, d, g}
= to h:{a, d, h}




BFS pseudocode

function bfs(v,, v,): a Q G
queue :={v,}. ‘ ‘
mark v, as visited. @
while queue is not empty: 9‘6

Vv := queue.removeFirst().
if vis v,
a path is found!

for each unvisited neighbor n of v:
mark n as visited.
queue.addLast(n).

// path is not found.

e Trace bfs(a, f) in the above graph.

- /

17




BFS observations

" in unweighted graphs, finds optimal cost path.

" |n weighted graphs, not always optimal cost. 9‘6

e retrieval: harder to reconstruct the actual sequence of vertices or
edges in the path once you find it

e optimality: e Q e
= always finds the shortest path (fewest edges). @te‘

= conceptually, BFS is exploring many possible paths in parallel, so it's
not easy to store a path array/list in progress

= solution: We can keep track of the path by storing predecessors for
each vertex (each vertex can store a reference to a previous vertex).

e DFS uses less memory than BFS, easier to reconstruct the path once
L found; but DFS does not always find shortest path. BFS does.
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DFS, BFS runtime

e What is the expected runtime of DFS and BFS, in terms of the
number of vertices V and the number of edges E ?

e Answer: O(|V]| + |E|)
= where |V| = number of vertices, |E| = number of edges

= why not O(|V] * [E])?

e What is the space complexity of each algorithm?
" (How much memory does each algorithm require?)

-

= Must potentially visit every node and/or examine every edge once.
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BFS that finds pat

function bfs(v,, v,):
queue :={v,}.
mark v, as visited.

while queue is not empty:
v := queue.removeFirst().
if vis v,
a path is found! (reconstruct it by following .prev back to v,.)

for each unvisited neighbor n of v:
mark n as visited. (set n.prev =v.)
queue.addLast(n).

// path is not found.

= By storing some kind of "previous" reference associated with each
vertex, you can reconstruct your path back once you find v,,.




