
1

CSE 373

AVL trees, continued

read: Weiss Ch. 4, section 4.1 - 4.4
slides created by Marty Stepp

http://www.cs.washington.edu/373/

© University of Washington, all rights reserved.

2

Right rotation

1. Detach left child (11)'s right subtree (27) (don't lose it!)

2. Consider left child (11) be the new parent.

3. Attach old parent (43) onto right of new parent (11).

4. Attach new parent (11)'s old right subtree (27)

as left subtree of old parent (43).

11

43

8 27

65

3

11

438

27 653

11

43

8
27

65

3

3

Left rotation

1. Detach right child (65)'s left subtree (51) (don't lose it!)

2. Consider right child (65) be the new parent.

3. Attach old parent (43) onto left of new parent (65).

4. Attach new parent (65)'s old left subtree (51)

as right subtree of old parent (43).

65

43

8751

21

73

21

43

65

51 87

73

65

8743

7321 51

4

Problem cases

• A single right rotation does not fix Case 2 (LR).

� (Similarly, a single left rotation does not fix Case 3 (RL).)

5

Left-right double rotation

• left-right double rotation: (fixes Case 2 (LR))

� 1) left-rotate k3's left child ... reduces Case 2 into Case 1

� 2) right-rotate k3 to fix Case 1

6

Left-right rotation steps

1. Left-rotate the overall parent's left child (11).

• This reduces Case 2 (LR) to Case 1 (LL).

2. Right-rotate the overall parent (43).

• This repairs Case 1 to be balanced.

11

43

8 27

65

31

27

43

11 31

65

8

27

4311

31 658

7

Left-right rotation example

• What is the balance factor of k1, k2, k3 before and after rotating?

8

Right-left double rotation

• right-left double rotation: (fixes Case 3 (RL))

� 1) right-rotate k1's right child ... reduces Case 3 into Case 4

� 2) left-rotate k1 to fix Case 4

9

Right-left rotation steps

1. Right-rotate the overall parent's right child (11).

• This reduces Case 3 (RL) to Case 4 (RR).

2. Right-rotate the overall parent (43).

• This repairs Case 4 to be balanced.

55

24

31 68

11

47

31

5524

31 6811

31

24

47

55

11

68

47

10

AVL add example

• Draw the AVL tree that would result if the following numbers were

added in this order to an initially empty tree:

� 20, 45, 90, 70, 10, 40, 35, 30, 99, 60, 50, 80

9980

9060

70

50

20

45

10

4030

35

11

Implementing add

• Perform normal BST add. But as recursive calls return, update each

node's height from new leaf back up to root.

� If a node's balance factor becomes +/- 2, rotate to rebalance it.

• How do you know which of the four Cases you are in?

� Current node BF < -1 → Case 1 (LL) or 2 (LR).

• look at current node's left child BF.

� left child BF < 0 → Case 1 (fix with R rotation)

� left child BF > 0 → Case 2 (fix with LR rotations)

� Current node BF > 1 → Case 3 (RL) or 4 (RR).

• look at current node's right child BF.

� right child BF < 0 → Case 3 (fix with RL rotations)

� right child BF > 0 → Case 4 (fix with L rotation)

12

AVL remove

• Removing from an AVL tree can also unbalance the tree.

� Similar cases as with adding: LL, LR, RL, RR

� Can be handled with the same remedies: rotate R, LR, RL, L

set.remove(8);

11

438

27 65

11

43

27 65

13

Remove extra cases

• AVL remove has 2 more cases beyond the 4 from adding:

� In these cases, the offending subtree has a balance factor of 0.

(The cause of imbalance is both LL and LR relative to k1 below.)

� When an add makes a node imbalanced, the child on the imbalanced

side always has a balance factor of either -1 or 1.

k1

C

A

k2

B

k1

C

A

k2

B

After removing

from subtree C:

14

Labeling the extra cases

• Let's label these two new cases of remove imbalance:

� Case 5: Problem is in both the LL and LR subtrees of the parent.

� Case 6: Problem is in both the RL and RR subtrees of the parent.

k1

C

A

k2

B

Case 5 (After

removing from

subtree C)
k1

A

B

k2

C

Case 6 (After

removing from

subtree A)

15

Fixing remove cases

• Each of these new cases can be fixed through a single rotation:

� To fix Case 5, we right rotate (shown below)

� To fix Case 6, we left rotate (symmetric case)

k1

CA

k2

B

Right rotate to

fix imbalance:
k1

C

A

k2

B

Case 5 (After

removing from

subtree C)

16

Implementing remove

• Perform normal BST remove. But as recursive calls return, update

each node's height from new leaf back up to root.

� If a node's balance factor becomes +/- 2, rotate to rebalance it.

� Current node BF < -1 → Case 1 (LL) or 2 (LR) or 5 (L-both).

• look at current node's left child BF.

� left child BF < 0 → Case 1 (fix with R rotation)

� left child BF > 0 → Case 2 (fix with LR rotations)

� left child BF = 0 → Case 5 (fix with R rotation)

� Current node BF > 1 → Case 3 (RL) or 4 (RR) or 6 (R-both).

• look at current node's right child BF.

� right child BF < 0 → Case 3 (fix with RL rotations)

� right child BF > 0 → Case 4 (fix with L rotation)

� right child BF = 0 → Case 6 (fix with L rotation)

17

AVL remove example

• Suppose we start with the AVL tree below.

� Draw the AVL tree that would result if the following numbers were

removed in this order from the tree:

• 10, 30, 40, 35, 70, 90, 99

9980

9060

70

50

20

45

10

4030

35 60

8045

50

18

How efficient is AVL?

• An AVL tree has the same general operations as a BST, with

rebalancing added to the add/remove operations.

� How much time does it take to rebalance the tree?

• How much time does it take to rebalance one node?

• How many nodes at most will we need to rebalance per add/remove?

� add: O(log N) to walk down the tree and add the element;

O(log N) number of nodes' heights to update;

O(1) single node may need to be rotated. O(log N) overall.

� contains: Unmodified. O(log N).

� remove: O(log N) to walk down the tree and remove the element;

O(log N) number of nodes' heights to update;

O(1) single node may need to be rotated. O(log N) overall.

19

Other interesting trees

• splay tree: Rotates each element you access to the top/root

� very efficient when that element is accessed again (happens a lot)

� easy to implement and does not need height field in each node

20

Other interesting trees

• red-black tree: Gives each node a "color" of red or black.

� Root is black. Root's direct children are red.

� If a node is red, its children must all be black.

� Every path downward from a node to the bottom must contain the

same number of "black" nodes.

