CSE 373

AVL trees, continued

read: Weiss Ch. 4, section 4.1 - 4.4

slides created by Marty Stepp http://www.cs.washington.edu/373/

© University of Washington, all rights reserved.

Right rotation

- 1. Detach left child (11)'s right subtree (27) (don't lose it!)
- 2. Consider left child (11) be the new parent.
- 3. Attach old parent (43) onto right of new parent (11).
- 4. Attach new parent (11)'s old right subtree (27) as left subtree of old parent (43).

Left rotation

- 1. Detach right child (65)'s left subtree (51) (don't lose it!)
- 2. Consider right child (65) be the new parent.
- 3. Attach old parent (43) onto left of new parent (65).
- 4. Attach new parent (65)'s old left subtree (51) as right subtree of old parent (43).

Problem cases

• A single right rotation does not fix Case 2 (LR).

(Similarly, a single left rotation does not fix Case 3 (RL).)

Left-right double rotation

- left-right double rotation: (fixes Case 2 (LR))
- - 1) left-rotate k₃'s left child ... reduces Case 2 into Case 1
 - 2) right-rotate k₃ to fix Case 1

Left-right rotation steps

- 1. Left-rotate the overall parent's left child (11).
 - This reduces Case 2 (LR) to Case 1 (LL).
- 2. Right-rotate the overall parent (43).
 - This repairs Case 1 to be balanced.

Left-right rotation example

• What is the balance factor of k_1 , k_2 , k_3 before and after rotating?

Right-left double rotation

• right-left double rotation: (fixes Case 3 (RL))

- 1) right-rotate k_1 's right child ... reduces Case 3 into Case 4
- 2) left-rotate k₁ to fix Case 4

Right-left rotation steps

- 1. Right-rotate the overall parent's right child (11).
 - This reduces Case 3 (RL) to Case 4 (RR).
- 2. Right-rotate the overall parent (43).
 - This repairs Case 4 to be balanced.

AVL add example

- Draw the AVL tree that would result if the following numbers were added in this order to an initially empty tree:
 - 20, 45, 90, 70, 10, 40, 35, 30, 99, 60, 50, 80

Implementing add

- Perform normal BST add. But as recursive calls return, update each node's height from new leaf back up to root.
 - If a node's balance factor becomes +/- 2, rotate to rebalance it.
- How do you know which of the four Cases you are in?
 - Current node BF < -1 \rightarrow Case 1 (LL) or 2 (LR).
 - look at current node's left child BF.
 - left child BF < 0 \rightarrow Case 1 (fix with R rotation)
 - left child BF > 0 \rightarrow Case 2 (fix with LR rotations)
 - Current node BF > 1 \rightarrow Case 3 (RL) or 4 (RR).
 - look at current node's right child BF.
 - right child BF < 0 \rightarrow Case 3 (fix with RL rotations)
 - right child BF > 0 \rightarrow Case 4 (fix with L rotation)

AVL remove

- Removing from an AVL tree can also unbalance the tree.
 - Similar cases as with adding: LL, LR, RL, RR
 - Can be handled with the same remedies: rotate R, LR, RL, L

```
set.remove(8);
```


Remove extra cases

- AVL remove has 2 more cases beyond the 4 from adding:
 - In these cases, the offending subtree has a balance factor of 0.
 (The cause of imbalance is *both* LL *and* LR relative to k₁ below.)
 - When an add makes a node imbalanced, the child on the imbalanced side always has a balance factor of either -1 or 1.

Labeling the extra cases

• Let's label these two new cases of remove imbalance:

- Case 5: Problem is in both the LL and LR subtrees of the parent.
- *Case 6:* Problem is in both the RL and RR subtrees of the parent.

Fixing remove cases

- Each of these new cases can be fixed through a single rotation:
 - To fix Case 5, we right rotate (shown below)
 - To fix Case 6, we left rotate (symmetric case)

Implementing remove

- Perform normal BST remove. But as recursive calls return, update each node's height from new leaf back up to root.
 - If a node's balance factor becomes +/- 2, rotate to rebalance it.
 - Current node BF < -1 \rightarrow Case 1 (LL) or 2 (LR) or 5 (L-both).
 - look at current node's left child BF.
 - left child BF < 0 \rightarrow Case 1 (fix with R rotation)
 - left child BF > 0 \rightarrow Case 2 (fix with LR rotations)
 - left child BF = $0 \rightarrow$ Case 5 (fix with R rotation)
 - Current node BF > 1 \rightarrow Case 3 (RL) or 4 (RR) or 6 (R-both).
 - look at current node's right child BF.
 - right child BF < 0 \rightarrow Case 3 (fix with RL rotations)
 - right child $BF > 0 \rightarrow Case 4$ (fix with L rotation)
 - right child BF = $0 \rightarrow$ Case 6 (fix with L rotation)

AVL remove example

• Suppose we start with the AVL tree below.

- Draw the AVL tree that would result if the following numbers were removed in this order from the tree:
 - 10, 30, 40, 35, 70, 90, 99

How efficient is AVL?

- An AVL tree has the same general operations as a BST, with rebalancing added to the add/remove operations.
 - How much time does it take to rebalance the tree?
 - How much time does it take to rebalance one node?
 - How many nodes at most will we need to rebalance per add/remove?
 - add: O(log N) to walk down the tree and add the element;
 O(log N) number of nodes' heights to update;
 O(1) single node may need to be rotated. O(log N) overall.
 - contains: Unmodified. O(log N).
 - remove: O(log N) to walk down the tree and remove the element;
 O(log N) number of nodes' heights to update;
 O(1) single node may need to be rotated. O(log N) overall.

Other interesting trees

• splay tree: Rotates each element you access to the top/root

- very efficient when that element is accessed again (happens a lot)
- easy to implement and does not need height field in each node

Other interesting trees

• red-black tree: Gives each node a "color" of red or black.

- Root is black. Root's direct children are red.
- If a node is red, its children must all be black.
- Every path downward from a node to the bottom must contain the same number of "black" nodes.

