
1

CSE 373

Implementing a Stack

Reading: Weiss Ch. 3; 3.6; 1.5

slides created by Marty Stepp

http://www.cs.washington.edu/373/

© University of Washington, all rights reserved.

2

Related classes

Consider classes for shapes with common features:

• Circle (defined by radius r):

area = π r 2, perimeter = 2 π r

• Rectangle (defined by width w and height h):

area = w h, perimeter = 2w + 2h

• Triangle (defined by side lengths a, b, and c)

area = √(s (s - a) (s - b) (s - c))

where s = ½ (a + b + c),

perimeter = a + b + c

� Every shape has these, but each computes them differently.

r

w

h

a

b

c

3

Interfaces

• interface: A list of methods that a class can promise to implement.

� Inheritance gives you an is-a relationship and code sharing.

• A Lawyer can be treated as an Employee and inherits its code.

� Interfaces give you an is-a relationship without code sharing.

• A Rectangle object can be treated as a Shape but inherits no code.

� Analogous to non-programming idea of roles or certifications:

• "I'm certified as a CPA accountant.

This assures you I know how to do taxes, audits, and consulting."

• "I'm 'certified' as a Shape, because I implement the Shape interface.

This assures you I know how to compute my area and perimeter."

4

Interface syntax
public interface name {

type name(type name, ..., type name);

type name(type name, ..., type name);

...

}

Example:

// Features common to all shapes.

public interface Shape {

double area();

double perimeter();

}

• Saved as Shape.java

• abstract method: A header without an implementation.

� The actual bodies are not specified, because we want to allow each class to

implement the behavior in its own way.

5

Implementing an interface
public class name implements interface {

...

}

• A class can declare that it "implements" an interface.

� Then the class must contain each method in that interface.

public class Rectangle implements Shape {

public double area() { return w * h; }

...

}

(Otherwise it will fail to compile.)
Rectangle.java:1: error: Rectangle is not abstract and

does not override abstract method perimeter() in Shape

public class Rectangle implements Shape {

^

6

Polymorphism
• polymorphism: The client of your classes can use the same code to

work with different types of objects.

public static void printInfo(Shape s) {

System.out.println("The shape: " + s);

System.out.println("area : " + s.area());

System.out.println("perim: " + s.perimeter());

System.out.println();

}

...

Circle circ = new Circle(12.0);

Triangle tri = new Triangle(5, 12, 13);

printInfo(circ);

printInfo(tri);

7

Java ADT interfaces

• Java describes its collection ADTs as interfaces:

� public interface Collection<E>

� public interface List<E>

� public interface Map<K, V>

� public class ArrayList<E> implements List<E>

� public class LinkedList<E> implements List<E>

� public class HashMap<K, V> implements Map<K, V>

• This means you can write one piece of code that can work with any

List, or any Set, or any Collection, ...

� public static int max(List<Integer> list) { ...

� private Set<String> names;

� public Map<String, Integer> getScores() { ...

8

Stacks

• stack: A collection based on the principle of adding elements and

retrieving them in the opposite order.

� Last-In, First-Out ("LIFO")

� Elements are stored in order of insertion.

• We do not think of them as having indexes.

� Client can only add/remove/examine

the last element added (the "top").

• basic stack operations:

� push: Add an element to the top.

� pop: Remove the top element.

� peek: Examine the top element.

stack

1bottom

2

3top

pop, peekpush

9

Recall: Java's Stack class

Stack<Integer> s = new Stack<Integer>();

s.push(42);

s.push(-3);

s.push(17); // [42, -3, 17] top

System.out.println(s.pop()); // 17

� Stack does not use an ADT interface; it is poorly designed.

� If we were to re-implement Stack properly, how would it look?

returns true if stack has no elementsisEmpty()

returns number of elements in stacksize()

returns top value from stack without removing it;
throws EmptyStackException if stack is empty

peek()

removes top value from stack and returns it;
throws EmptyStackException if stack is empty

pop()

places given value on top of stackpush(value)

constructs a new stack with elements of type EStack<E>()

10

Int Stack ADT interface

• Let's write our own implementation of a stack.

� To simplify the problem, we only store ints in our stack for now.

� As is (usually) done in the Java Collection Framework, we will define

stacks as an ADT by creating a stack interface.

public interface IntStack {

void clear();

boolean isEmpty();

int peek();

int pop();

void push(int value);

int size();

}

11

Implementing w/ array
public class ArrayIntStack implements IntStack {

private int[] elements;

private int size;

...

}

• A stack can be implemented efficiently with an unfilled array.
� An array plus a size field to remember the indexes used.

s.push(26); // client code

s.push(-9);

s.push(14);

3size

0

5

0

6

0

4

0

7

0

8

14

2

0

3

0-926value

910index

12

Implementing push
• How do we push an element onto the end of a stack?

public void push(int value) { // just put the element

elements[size] = value; // in the last slot,

size++; // and increase size

}

s.push(42); // client code

6size

12

5

0

6

5

4

0

7

0

8

9

2

7

3

083value

910index

7size

12

5

42

6

5

4

0

7

0

8

9

2

7

3

083value

910index

13

Running out of space

• What to do if client needs to add more than 10 elements?

� s.push(15); // add an 11th element

• Resize the array if necessary:

public void push(int value) {

if (size == elements.length) {

elements = Arrays.copyOf(elements, 2*size);

}

elements[size] = value;

size++;

}

10size

12

5

4

6

5

4

8

7

1

8

9

2

7

3

683value

910index

14

The Arrays class

• Class Arrays in java.util has many useful array methods:

� Syntax: Arrays.methodName(parameters)

returns a new resized copy of an arraycopyOf(array, length)

Method name Description

binarySearch(array, value)

or (array, start, end, value)

returns the index of the given value in a sorted array

(or < 0 if not found)

equals(array1, array2) returns true if the two arrays contain same

elements in the same order

fill(array, value) sets every element to the given value

sort(array) arranges the elements into sorted order

toString(array) returns a string representing the array, such as

"[10, 30, -25, 17]"

15

Implementing pop
• How do we pop an element off the end of a stack?

public int pop() {
int top = elements[size - 1];

elements[size - 1] = 0; // remove last element

size--; // and decrease size

return top;

}

s.pop(); // client code; returns 12

6size

12

5

0

6

5

4

0

7

0

8

9

2

7

3

083value

910index

5size

0

5

0

6

5

4

0

7

0

8

9

2

7

3

083value

910index

16

Popping an empy stack
• What if the client tries to pop from an empty stack?

IntStack s = new ArrayIntStack();

s.pop(); // client code

� What "should" happen?

� What is the right action for the stack to take in this case?

� What do Java's collections do in cases like this one?

0size

0

5

0

6

0

4

0

7

0

8

0

2

0

3

000value

910index

17

Throwing exceptions
throw new ExceptionType();

throw new ExceptionType("message");

• Generates an exception that will crash the program,

unless the client has code to handle ("catch") the exception.

• Common exception types:
� ArithmeticException, ArrayIndexOutOfBoundsException, ClassCastException,

EmptyStackException, FileNotFoundException, IllegalArgumentException, IllegalStateException,

IOException, NoSuchElementException, NullPointerException, RuntimeException,

UnsupportedOperationException

• Why would anyone ever want a program to crash?

18

Commenting exceptions

• If your method potentially throws any exceptions, you should

comment them in its header; explain what exception and why.

/**

* Removes and returns the top element of the stack.

* Throws an EmptyStackException if stack is empty.
*/

public int pop() {
if (size == 0) {

throw new EmptyStackException();
}
int top = elements[size - 1];

elements[size - 1] = 0; // remove last element

size--; // and decrease size

return top;

}

19

Other methods

• Let's implement the following methods in our stack class:

� peek()

Returns the element on top of the stack, without removing it.

� size()

Returns the number of elements in the stack.

� isEmpty()

Returns true if the stack contains no elements; else false.

(Why write this if we already have the size method?)

� clear()

Removes all elements from the stack.

� toString()

Returns a string representation of the stack's elements.

20

Type parameters (generics)

List<Type> name = new ArrayList<Type>();

• Recall: When constructing Java collections, you specify the type of

elements it will contain between < and >.

� We say that the List accepts a type parameter,

or that it is a generic class.

List<String> names = new ArrayList<String>();

names.add("Marty Stepp");

names.add("Stuart Reges");

List<Integer> scores = new ArrayList<Integer>();

scores.add(17);

scores.add(12);

21

Implementing a generic class
// a parameterized (generic) class

public class name<TypeParam> {

...

}

� By putting a TypeParam in < >, you are demanding that any client that

constructs your object must supply a type parameter.

• You can require multiple type parameters separated by commas.

• Don't write a specific type like String; write a type variable like T or E.

� The client gives a value to that type variable on object construction.

� The rest of your class's code can refer to that type by name.

� Exercise: Convert our stack interface/class to use generics.

22

Stack<E> ADT interface

• Let's modify our stack interface to be generic.

� Anywhere that we expected an int element value, change it to E.

� Not all occurrences of int change to E; only ones about elements.

� We will also need to modify our ArrayIntStack class...

public interface Stack<E> {

void clear();

boolean isEmpty();

E peek();

E pop();

void push(E value);

int size();

}

23

Generic type limitations
public class Foo<T> {

private T myField; // ok

public void method1(T param) {

myField = param; // ok

T temp = new T(); // error

T[] array = new T[10]; // error

}

}

• If my class accepts type parameter T, what is a T? What can a T do?

� Essentially nothing; think of a T as just any general Object.

� You can create variables, fields, parameters, and returns of type T.

� Can't call any type-specific methods on it, like length, toUpperCase, sort...

� Can't construct a new object of type T.

� Can't directly construct a new array of T objects (T[]).

• (But a work-around is to construct a new Object[] and cast to T[]...)

