
1

CSE 373

Java Collection Framework

reading: Weiss Ch. 3, 4.8

slides created by Marty Stepp

http://www.cs.washington.edu/373/

2

Arrays

• array: An object that stores many values of the same type.

� element: One value in an array.

� index: A 0-based integer to access an element from an array.

� length: Number of elements in the array.

index 0 1 2 3 4 5 6 7 8 9

value 12 49 -2 26 5 17 -6 84 72 3

element 0 element 4 element 9

length = 10

3

Array declaration

type[] name = new type[length];

� Length explicitly provided. All elements' values initially 0.

int[] numbers = new int[5];

type[] name = {value, value, … value};

� Infers length from number of values provided. Example:

int[] numbers = {12, 49, -2, 26, 5, 17, -6};

index 0 1 2 3 4

value 0 0 0 0 0

index 0 1 2 3 4 5 6

value 12 49 -2 26 5 17 -6

4

Accessing elements; length

name[index] // access

name[index] = value; // modify

name.length

• Legal indexes: between 0 and the array's length - 1.

numbers[3] = 88;

for (int i = 0; i < numbers.length; i++) {

System.out.print(numbers[i] + " ");

}

System.out.println(numbers[-1]); // exception

System.out.println(numbers[7]); // exception

index 0 1 2 3 4 5 6

value 12 49 -2 88 5 17 -6

5

Limitations of arrays

• Arrays are useful, but they have many flaws and limitations:

� size cannot be changed after the array has been constructed

� no built-in way to print the array

� no built-in way to insert/remove an element

� no search feature

� no sort feature

� no easy duplicate detection/removal

� inconsistent syntax with other objects (length vs. length() vs. size())

� ...

6

Collections

• collection: An object that stores data (objects) inside it.

� the objects of data stored are called elements

� typical operations: add, remove, clear, contains (search), size

� some collections maintain an ordering; some allow duplicates

� data structure: underlying implementation of a collection's behavior

• most collections are based on an array or a set of linked node objects

� examples found in the Java class libraries:

• ArrayList, LinkedList, HashMap, TreeSet, PriorityQueue

� all collections are in the java.util package

import java.util.*;

7

Java collection framework

8

Abstract data types (ADTs)

• abstract data type (ADT): A specification of a collection of data and

the operations that can be performed on it.

� Describes what a collection does, not how it does it.

• Java's collection framework uses interfaces to describe ADTs:

� Collection, Deque, List, Map, Queue, Set

• An ADT can be implemented in multiple ways by classes:

� ArrayList and LinkedList implement List

� HashSet and TreeSet implement Set

� LinkedList , ArrayDeque, etc. implement Queue

9

Constructing a collection
Interface<Type> name = new Class<Type>();

• Use the ADT interface as the variable type.

� Use the specific collection implementation class on the right.

• Specify the type of its elements between < and >.

� This is called a type parameter or a generic class.

� Allows the same ArrayList class to store lists of different types.

List<String> names = new ArrayList<String>();

names.add("Marty Stepp");

names.add("Stuart Reges");

10

Why use ADTs?

• Q: Why would we want more than one kind of list, queue, etc.?

� (e.g. Why do we need both ArrayList and LinkedList?)

• A: Each implementation is more efficient at certain tasks.

� ArrayList is faster for adding/removing at the end;

LinkedList is faster for adding/removing at the front/middle.

� You choose the optimal implementation for your task, and if the rest

of your code is written to use the ADT interfaces, it will work.

• Q: Why declare our variables using interface types (e.g. List)?

� (e.g. List<String> list = new ArrayList<String>();)

• A: So that the program could be changed to use a different

implementation later without needing to change the code much.

11

Lists

• list: a collection storing an ordered sequence of elements

� each element is accessible by a 0-based index

� a list has a size (number of elements that have been added)

� elements can be added to the front, back, or elsewhere

� in Java, represented by the List interface, implemented

by the ArrayList and LinkedList classes

12

List methods

creates a new empty list,
or a set based on the elements of another list

constructor()
constructor(list)

returns a string representation of the list
such as "[3, 42, -7, 15]"

toString()

returns the number of elements in listsize()

replaces value at given index with given valueset(index, value)

removes/returns value at given index, shifting
subsequent values to the left

remove(index)

returns the value at given indexget(index)

returns first index where given value is found in list
(-1 if not found)

indexOf(value)

removes all elements of the listclear()

inserts given value just before the given index,
shifting subsequent values to the right

add(index, value)

appends value at end of listadd(value)

13

List methods 2

returns the elements in this list as an arraytoArray()

returns the sub-portion of the list between

indexes from (inclusive) and to (exclusive)

subList(from, to)

removes any elements not found in given list from this listretainAll(list)

removes any elements found in the given list from this listremoveAll(list)

finds and removes the given value from this listremove(value)

returns last index value is found in list (-1 if not found)lastIndexOf(value)

returns an object used to examine the contents of the listiterator()

listIterator()

returns true if given other list contains the same elementsequals(list)

returns true if this list contains every element from given listcontainsAll(list)

returns true if given value is found somewhere in this listcontains(value)

adds all elements from the given list to this list

(at the end of the list, or inserts them at the given index)

addAll(list)

addAll(index, list)

14

List implementation

•ArrayList is built using an internal "unfilled" array and a size

field to remember how many elements have been added

•LinkedList is built using a chain of small "node" objects, one for

each element of the data, with a link to a "next" node object

3size

0

6

0

7

0

8index 0 1 2 3 4 5 9

value 42 -3 17 0 0 0 0

front

size 3

42

nextdata

-3

nextdata

17

nextdata

element 0 element 1 element 2

15

Stacks and queues
• stack: Retrieves elements in the reverse of the order they were added.

• queue: Retrieves elements in the same order they were added.

• Q: Similar to a list; why do we also have stacks and queues?

� A: Sometimes it is good to have a collection that is less powerful, but is

optimized to perform certain operations very quickly.

stack

queue
1bottom

2

3top

pop, peekpush

321

backfront

addremove, peek

16

Class Stack

Stack<Integer> s = new Stack<Integer>();

s.push(42);

s.push(-3);

s.push(17); // bottom [42, -3, 17] top

System.out.println(s.pop()); // 17

returns true if stack has no elementsisEmpty()

returns number of elements in stacksize()

returns top value from stack without removing it;
throws EmptyStackException if stack is empty

peek()

removes top value from stack and returns it;
throws EmptyStackException if stack is empty

pop()

places given value on top of stackpush(value)

constructs a new stack with elements of type EStack<E>()

17

Interface Queue

Queue<Integer> q = new LinkedList<Integer>();
q.add(42);

q.add(-3);

q.add(17); // front [42, -3, 17] back

System.out.println(q.remove()); // 42

� When constructing a queue you must use a
new LinkedList object instead of a Queue object.

returns true if queue has no elementsisEmpty()

returns number of elements in queuesize()

returns front value from queue without removing it;
returns null if queue is empty

peek()

removes value from front of queue and returns it;
throws a NoSuchElementException if queue is empty

remove()

places given value at back of queueadd(value)

18

Queue idioms

• As with stacks, must pull contents out of queue to view them.

// process (and destroy) an entire queue

while (!q.isEmpty()) {

do something with q.remove();

}

� another idiom: Examining each element exactly once.

int size = q.size();

for (int i = 0; i < size; i++) {

do something with q.remove();

(including possibly re-adding it to the queue)

}

19

Stack/Queue implementation

• Stacks are almost always implemented using an array (why?)

• Queues are built using a doubly-linked list with a front and back

reference, or using an array with front and back indexes (why?)

3size

0

6

0

7

0

8index 0 1 2 3 4 5 9

value 42 -3 17 0 0 0 0

front

back

size 3

prev

42

nextdata prev

42

nextdata prev

42

nextdata

20

Sets

• set: A collection of unique values (no duplicates allowed)

that can perform the following operations efficiently:

� add, remove, search (contains)

� We don't think of a set as having indexes; we just

add things to the set in general and don't worry about order.

set.contains("to") true

set

"the"
"of"

"from"

"to"

"she"
"you"

"him""why"

"in"

"down"

"by"

"if"

set.contains("be") false

21

Set implementation

• in Java, sets are represented by Set interface in java.util

• Set is implemented by HashSet and TreeSet classes

� HashSet: implemented using a "hash table" array;

very fast: constant runtime (O(1)) for all operations

elements are stored in unpredictable order

� TreeSet: implemented using a "binary search tree";

pretty fast: logarithmic runtime (O(log N)) for all operations

elements are stored in sorted order

� LinkedHashSet: O(1) but stores in order of insertion

22

Set methods
List<String> list = new ArrayList<String>();
...
Set<Integer> set = new TreeSet<Integer>(); // empty

Set<String> set2 = new HashSet<String>(list);

creates a new empty set,

or a set based on the elements of a collection

constructor()

constructor(collection)

removes all elements of the setclear()

returns true if the set's size is 0isEmpty()

returns true if the given value is found in this setcontains(value)

returns a string such as "[3, 42, -7, 15]"toString()

returns the number of elements in listsize()

removes the given value from the setremove(value)

adds the given value to the setadd(value)

23

Set operations

returns an array of the elements in this settoArray()

removes elements not found in given collection from this setretainAll(coll)

removes all elements in the given collection from this setremoveAll(coll)

returns an object used to examine set's contents (seen later)iterator()

returns true if given other set contains the same elementsequals(set)

returns true if this set contains every element from given setcontainsAll(coll)

adds all elements from the given collection to this setaddAll(collection)

addAll retainAll removeAll

24

Sets and ordering
• HashSet : elements are stored in an unpredictable order

Set<String> names = new HashSet<String>();
names.add("Jake");

names.add("Robert");

names.add("Marisa");

names.add("Kasey");

System.out.println(names);

// [Kasey, Robert, Jake, Marisa]

• TreeSet : elements are stored in their "natural" sorted order
Set<String> names = new TreeSet<String>();
...

// [Jake, Kasey, Marisa, Robert]

• LinkedHashSet : elements stored in order of insertion
Set<String> names = new LinkedHashSet<String>();
...

// [Jake, Robert, Marisa, Kasey]

25

Comparable

• If you want to store objects of your own class in a TreeSet:

� Your class must implement the Comparable interface to define a

natural ordering function for its objects.

public interface Comparable<E> {

public int compareTo(E other);

}

• A call to compareTo must return:

a value < 0 if this object comes "before" the other object,

a value > 0 if this object comes "after" the other object,

or 0 if this object is considered "equal" to the other

26

The "for each" loop (7.1)
for (type name : collection) {

statements;

}

• Provides a clean syntax for looping over the elements of a Set,
List, array, or other collection

Set<Double> grades = new HashSet<Double>();
...

for (double grade : grades) {

System.out.println("Student's grade: " + grade);

}

� needed because sets have no indexes; can't get element i

27

Set implementation

•TreeSet is implemented using a binary search tree

•HashSet is built using a special kind of array called a hash table

7size

0

6

87

7

0

8index 0 1 2 3 4 5 9

value 60 91 42 -3 0 55 29

9160

8729

55

42-3

root

