CSE 373

Review of Java

slides created by Marty Stepp
also based on course materials by Stuart Reges

http://www.cs.washington.edu/373/

) Univercity of Wach: Lo) J

Summary

e These slides contain material about objects, classes, and object-
oriented programming in Java.

e \We won't be covering these slides in lecture, but they contain
material you are expected to remember from CSE 142 and 143.

e For additional review material, consult Ch. 1-6 of Core Java.

Primitives vs. objects; value
and reference semantics

A swap method?

e Does the following swap method work? Why or why not?

public static void main(String[] args)
int
int b = 35;

// swap a with b?

a = 7/;

swap (a, b);

System.out.println(a +

" + b);

public static void swap(int a, int b) {
int

a
b

temp = a;
b;
temp;

Value semantics

e value semantics: Behavior where values are copied when assigned,
passed as parameters, or returned.

= All primitive types in Java use value semantics.
= When one variable is assigned to another, its value is copied.
= Modifying the value of one variable does not affect others.

int x = 5;

int y = x; // x =5, y=5
y = 17; // x =5, y =17
X = 8; // x =8, yv =17

Reference semantics (objects)

e reference semantics: Behavior where variables actually store the

address of an object in memory.

= When one variable is assigned to another, the object is
not copied; both variables refer to the same object.

= Modifying the value of one variable will affect others.

int[] al = {4, 15, 8};

int[] a2 = al; // refer to same array as al
a2[0] = 7;

System.out.println (Arrays.toString(al)); // [7, 15,

index O 1 2

01@ > value | 7 |15 8 ‘—OC’Z

8]

References and objects

e Arrays and objects use reference semantics. Why?
= efficiency. Copying large objects slows down a program.
" sharing. It's useful to share an object's data among methods.

DrawlingPanel panell = new DrawingPanel (80, 50);
DrawingPanel panel2 = panell; // same window
panel2.setBackground (Color.CYAN) ;

panell O\, ® OO CsE..
panel2 O/

Objects as parameters

e \When an object is passed as a parameter, the object is not copied.
The parameter refers to the same object.

= |f the parameter is modified, it will affect the original object.

public static void main(String[] args) {
DrawingPanel window = new DrawingPanel (80, 50);
window. setBackground (Color.YELLOW) ;

example (window) ; window

}

public static void example (DrawingPanel panel) {
panel.setBackground (Color.CYAN) ;

® O O CSE..

} - pane/<:> >

Arrays as parameters

e Arrays are also passed as parameters by reference.
= Changes made in the method are also seen by the caller.

public static void main(String[] args) {
int[] ig = {126, 167, 95};
increase (iq) ; .
System.out.println (Arrays.toString(1iq)); q
}
public static voild increase(int[] a) {
for (int 1 = 0; 1 < a.length; 1i++) {
ali] = al[i] * 2;
}
}
index 0 1 2
= Qutput:
(252, 334, 190] aO—> value | 252 | 334 | 190

Arrays pass by reference

e Arrays are also passed as parameters by reference.
= Changes made in the method are also seen by the caller.

public static voild main(String[] args) {
int[] i1g = {126, 167, 95};
increase (iq) ;
System.out.println (Arrays.toString(iq)) ;
}

public static void increase(int[] a) { iq
for (int 1 = 0; 1 < a.length; 1i++) {
ali] = afli] * 2;

}
}

= Qutput:
(252, 334, 190] a()— wvale | 252|334 | 190

index 0 1 2

10

Classes and Objects

Objects

e object: An entity that encapsulates data and behavior.
" data: variables inside the object
= behavior: methods inside the object

Methods

e You interact with the methods;
the data is hidden in the object. (hehaston

e Constructing (creating) an object:
Type objectName = new Type (parameters) ;

e Calling an object's method:
objectName . methodName (parameters) ;

-

12

Classes

e class: A program entity that represents either:
1. A program / module, or
2. Atemplate for a new type of objects.

— object-oriented programming (OOP): Programs that perform their
behavior as interactions between objects.

— abstraction: Separation between concepts and details.
Objects and classes provide abstraction in programming.

13

Blueprint analogy

iPod blueprint

state:
current song
volume
battery life

behavior:
power on/off
change station/song
change volume
choose random song

iPod #1 iPod #2
state: state:
song = "1,000,000 Miles" song = "Letting You"
volume = 17 volume =9
battery life = 2.5 hrs __| battery life = 3.41 hrs
behavior: w4 behavior: '

power on/off

change station/song
change volume
choose random song |

power on/off
change station/song
change volume
choose random song

I,g/

creates

iPod #3

state:
song = "Discipline"
volume = 24
battery life = 1.8 hrs .

behavior:
power on/off
change station/song
change volume

_

choose random song =

Point objects

import java.awt.*;

Point pl = new Point (5, -2);
)

Point p2 = new Point () ; // origin (0, O0)
e Data: Name Description
pre the point's x-coordinate
Y the point's y-coordinate
e Methods:
Name Description
setLocation (x, y) |setsthe point'sxandy to the given values
translate (dx, dy) adjusts the point's x and y by the given amounts
distance (p) how far away the point is from point p

- _/

15

Point class as blueprint

Point class

state each object should receive:
int x, vy

behavior each object should receive:
setLocation(int x, int vy)
translate(int dx, int dy)
distance (Point p)

A 4

Point object #1 Point object #2 Point object #3
state: state: state:
x = 51 y = =2 X =|=-24| vy =137 x = 18 y 5 42
behavior: behavior: behavior:
setLocation(int x, int vy) setLocation(int x, int vy) setLocation(int x, int vy)
translate(int dx, int dy) translate(int dx, int dy) translate(int dx, int dy)
distance (Point p) distance (Point p) distance (Point p)

* The class (blueprint) describes how to create objects.

= Each object contains its own data and methods.
\ e The methods operate on that object's data. /

16

Clients of objects

e client program: A program that uses objects.
" Example: Bomb is a client of DrawingPanel and Graphics.

DrawingPanel. java (class)

A
y

Bomb. java (client program)
public class Bomb {
main (String[] args) {
new DrawingPanel(...) }

D ingPanel (')\
new DrawingPanel (... ~
} \\A

} ® O O CSE .. 00 0O CsE..

public class DrawingPanel {

17

Fields

e field: A variable inside an object that is part of its state.
— Each object has its own copy of each field.

e Declaration syntax:

private type name;

— Example:

public class Poilnt {
private int x;
private int vy;

18

Encapsulation

e encapsulation: Hiding implementation details from clients.

= Encapsulation enforces abstraction.

e separates external view (behavior) from internal view (state)
e protects the integrity of an object's data

Measure=—"my
Voltage '8&

Benefits of encapsulation

e Abstraction between object and clients

e Protects object from unwanted access
= Example: Can't fraudulently increase an Account's balance.

e Can change the class implementation later

= Example: Point could be rewritten in polar (-.8)
coordinates (r, 9) with the same methods. .

Y

e Can constrain objects' state (invariants)
= Example: Only allow Accounts with non-negative balance.
= Example: Only allow Dates with a month from 1-12.

Instance methods

 instance method (or object method): Exists inside each object of a
class and gives behavior to each object.

public type name (parameters) {
statements;

}

" same syntax as static methods, but without static keyword

Example:

public void tranlate(int dx, 1int dy) {
X += dx;
y += dy;

The implicit parameter

e implicit parameter:
The object on which an instance method is being called.

— If we have a Point objectpl and callpl.translate (5, 3);
the object referred to by p1 is the implicit parameter.

— If we have a Point object p2 and call p2.translate (4, 1);
the object referred to by p2 is the implicit parameter.

— The instance method can refer to that object's fields.

e We say that it executes in the context of a particular object.

«translate can refer to the x and y of the object it was called on.

Categories of methods

e accessor: A method that lets clients examine object state.
" Examples: distance,distanceFromOrigin

= often has a non-void return type

e mutator: A method that modifies an object's state.

" Examples: setLocation, translate

e helper: Assists some other method in performing its task.
= often declared as private so outside clients cannot call it

The toString method

tells Java how to convert an object into a St ring for printing

public String toString/()

code that returns a String representing this object;

= Method name, return, and parameters must match exactly.

= Example:

// Returns a String representing this Point.
public String toString/()

}

return + X + + vy +

Constructors

e constructor: Initializes the state of new objects.

public type (parameters) {
statements;

}

— runs when the client uses the new keyword

— no return type is specified; implicitly "returns"” the new object

public class Poilnt {
private 1nt x;
private 1nt vy;

public Point (int initialX, int initialY) ({
X = 1initialX;
y = initialy;

Multiple constructors

e A class can have multiple constructors.
= Each one must accept a unique set of parameters.

e Example: APoint constructor with no parameters that initializes
the point to (0, 0).

// Constructs a new point at (0, 0).
public Point () {

x = 0;

y = 0;

The keyword this

« this : Refers to the implicit parameter inside your class.

(a variable that stores the object on which a method is called)

= Referto afield: this.field

= Calla method: this.method (parameters) ;

= One constructorthis (parameters) ;
can call another:

Calling another constructor

public class Polnt {
private int x;
private 1nt vy;

public Point () {
this (0, O0);

| T~

public Point (int x, 1int y) {
this.x X;
this.y Y

}

e Avoids redundancy between constructors

\ e Only a constructor (not a method) can call another constructor

Comparing objects for
equality and ordering

Comparing objects

e The == operator does not work well with objects.
== compares references to objects, not their state.
It only produces t rue when you compare an object to itself.

Point
Point
Poilnt

// pl
// pl
// p2

pl =

Point (5,
Point (5,

pl
false;
false;

p2
true

p3

3);
3);

v

The equals method

e The equals method compares the state of objects.

if (strl.equals(str2)) {
System.out.println("the strings are equal");

e But if you write a class, its equals method behaves like ==

if (pl.equals (p2)) { // false :—(
System.out.println("equal");

" This is the default behavior we receive from class Object.

_ = Java doesn't understand how to compare new classes by default.)

The compareTo method (10.2)

e The standard way for a Java class to define a comparison function for
its objects is to define a compareTo method.

= Example: in the String class, there is a method:

public 1nt compareTo (String other)

e Acall of A.compareTo (B) will return:

avalue< O if A comes "before" B in the ordering,
avalue> 0 if A comes "after" B in the ordering,
or 0 if A and B are considered "equal" in the ordering.

-

Using compareTo

e compareTo can be used as a test in an i f statement.

String a = "alice";
String b = "bob";
if (a.compareTo(b) < 0) { // true
}

Primitives Objects
if (a < Db) if (a.compareTo(b) < 0)
if (a <= b)) { ... 1if (a.compareTo(b) <= 0) {
if (a == b)) { ... if (a.compareTo(b) == 0) {
if (a !'= b) { if (a.compareTo(b) != 0) {
if (a >= b) { if (a.compareTo(b) >= 0) {
if (a > Db) if (a.compareTo(b) > 0)

compareTo and collections

e You can use an array or list of strings with Java's included binary
search method because it calls compareTo internally.

String[] a = {"al", "bOb", "cari", "dan",
"mike"};
int index = Arrays.binarySearch(a, "dan"); // 3

e Java's TreeSet/Map use compareTo internally for ordering.

Set<String> set = new TreeSet<String>();
for (String s : a) {
set.add(s) ;
}
System.out.println(s);
\‘ // [al, bob, cari, dan, mike] 4/

Comparable (10.2)

public 1nterface Comparable<E> {
public int compareTo(E other);

e A class can implement the Comparable interface to define a natural
ordering function for its objects.

e A call to your compareTo method should return:
avalue< 0 if this object comes "before" the other object,
avalue> 0 if this object comes "after" the other object,
or 0 if this objectis considered "equal" to the other.

Klf you want multiple orderings, use a Comparator instead (see Ch. 13.1) /
35

Comparable template

public class name implements Comparable<name> {

public int compareTo(name other) {

}

Comparable example

public class Polint implements Comparable<Point> {
private 1nt x;
private 1nt vy;

// sort by x and break ties by y
public int compareTo (Point other) {
1f (x < other.x) {
return -1;
} else 1if (x > other.x) {
return 1;
} else 1f (y < other.y) {

return -1; // same x, smaller y
} else 1f (y > other.y) {

return 1; // same x, larger y
} else {

return 0; // same x and same y

compareTo tricks

e subtraction trick - Subtracting related numeric values produces the
right result for what you want compareTo to return:

// sort by x and break ties by y
public int compareTo (Point other) {

if (x !'= other.x) {
return x - other.x; // different x
} else {
return y - other.y; // same x; compare y
}
}
" The idea:

eifx > other.x, thenx - other.x > 0
eifx < other.x, thenx - other.x < 0

eifx == other.x, thenx - other.x ==

\ = NOTE: This trick doesn't work for doubles (butseeMath.signum) /38

compareTo tricks 2

e delegation trick - If your object's fields are comparable (such as
strings), use their compareTo results to help you:

// sort by employee name, e.g. "Jim" < "Susan"
public 1nt compareTo (Employee other) ({
return name.compareTo (other.getName()) ;

}

e toStringtrick - If your object's toString representation is
related to the ordering, use that to help you:

// sort by date, e.g. "09/19" > "04/01"
public i1int compareTo (Date other) {

return
toString () .compareTo (other.toString()) ;

_ }

Inheritance

Inheritance

e inheritance: Forming new classes based on existing ones.
= a way to share/reuse code between two or more classes

= superclass: Parent class being extended.

= subclass: Child class that inherits behavior from superclass.
e gets a copy of every field and method from superclass

= js-a relationship: Each object of the subclass also "is a(n)" object of the
superclass and can be treated as one.

Employee
20-page manual
iy

|

Lawyer Secretary Marketer
Z2-page manual 1-page manual 3-page manual
iy

LegalSecretary
1-page manual

41

Inheritance syntax

public class name extends superclass

= Example:

public class Lawyer extends Employee {

e By extending Employee, each Lawyer object now:
= receives a copy of each method from Employee automatically
= can be treated as an Employee by client code

e Lawyer can also replace ("override") behavior from Employee.

- /

42

Overriding Methods

e override: To write a new version of a method in a subclass that
replaces the superclass's version.

= No special syntax required to override a superclass method.
Just write a new version of it in the subclass.

public class Lawyer extends Employee {
// overrides getVacationForm in Employee class
public String getVacationForm() {
return "pink";

}

43

The super keyword

e A subclass can call its parent's method/constructor:

super . method (parameters) // method
super (parameters) ; // constructor

public class Lawyer extends Employee {
public Lawyer (String name) {
super (name) ;

}

// give Lawyers a $5K raise (better)
public double getSalary () {
double baseSalary = super.getSalary();
return baseSalary + 5000.00;

44

Subclasses and fields

public class Employee {
private double salary;

public class Lawyer extends Employee {

public void giveRaise (double amount) {
salary += amount; // error; salary is private

* Inherited private fields/methods cannot be directly accessed by
subclasses. (The subclass has the field, but it can't touch it.)

= How can we allow a subclass to access/modify these fields?

- /

45

Protected fields/methods

protected type name; // field

protected type name (type name, ..., type name) {
statement(s); // method

}

e a protected field or method can be seen/called only by:
= the class itself, and its subclasses
= also by other classes in the same "package" (discussed later)
= useful for allowing selective access to inner class implementation

public class Employee {
protected double salary;

46

Inheritance and constructors

e |f we add a constructor to the Employee class, our subclasses do
not compile. The error:

Lawyer.java:2: cannot find symbol
symbol : constructor Employee ()
location: class Employee

public class Lawyer extends Employee {

A

* The short explanation: Once we write a constructor (that requires
parameters) in the superclass, we must now write constructors for our
employee subclasses as well.

47

Inheritance and constructors

e Constructors are not inherited.

= Subclasses don't inherit the Employee (int) constructor.

= Subclasses receive a default constructor that contains:

public Lawyer ()

super () ;

{

// calls Employee () constructor

e But our Employee (int) replaces the default Employee ().

"= The subclasses' default constructors are now trying to call a non-
existent default Employee constructor.

48

Calling superclass constructor

super (parameters) ;

= Example:
public class Lawyer extends Employee {
public Lawyer (int years) {
super (years); // calls Employee c'tor

}

}

" The super call must be the first statement in the constructor.

49

Polymorphism

Polymorphism

e polymorphism: Ability for the same code to be used with different
types of objects and behave differently with each.

" System.out.println can print any type of object.

e Each one displays in its own way on the console.

" CritterMain can interact with any type of critter.

e Each one moves, fights, etc. in its own way.

51

Coding with polymorphism

e Avariable of type T can hold an object of any subclass of T.

Employee ed = new Lawyer () ;

" You can call any methods from the Employee class on ed.

e When a method is called on ed, it behaves as a Lawyer.

System.out.println(ed.getSalary()) ; // 50000.0
System.out.println(ed.getVacationForm()); // pink

- /

52

Polymorphic parameters

e You can pass any subtype of a parameter's type.

public static void main(Stringl[]
new Lawyer () ;
new Secretary();

Lawyer lisa =
Secretary steve =
printInfo(lisa);

printInfo (steve);

}

}

OUTPUT:

pay 50000.0 pay
vdays: 15 vdays:
vform: pink viorm:

out.println ("vdays:

System.out.println("pay
System.
System.out.println
System.out.println

args) {

public static void printInfo (Employee e) {

" + e.getSalary());
(" + e.getVacationDays())
("vform: "
(

) ;

50000.0
10
vellow

+ e.getVacationForm());

4
’

53

Polymorphism and arrays

e Arrays of superclass types can store any subtype as elements.

public static void main(String[] args) {
Employee[] e = {new Lawyer(), new Secretary(),
new Marketer (), new LegalSecretary() };

for (int 1 = 0; 1 < e.length; 1i++) {
System.out.println("pay : " + e[i].getSalary());
System.out.println("vdays: " + 1i].getVacationDays())

System.out.println();

Output:

pay : 50000.0 pay : 60000.0
vdays: 15 vdays: 10

pay : 50000.0 pay : 55000.0
vdays: 10 vdays: 10

54

Casting references

e A variable can only call that type's methods, not a subtype's.

Employee ed = new Lawyer () ;
int hours = ed.getHours(); // ok; in Employee
ed.sue () ; // compiler error

= The compiler's reasoning is, variable ed could store any kind of
employee, and not all kinds know how to sue .

e To use Lawyer methods on ed, we can type-cast it.

Lawyer theRealkEd = (Lawyer) ed;
theRealEd.sue () ; // ok
((Lawyer) ed) .sue(); // shorter wversion

55

More about casting

e The code crashes if you cast an object too far down the tree.

Employee eric = new Secretary();

((Secretary) eric).takeDictation("hi"); // ok
((LegalSecretary) eric).filelegalBriefs(); // error
// (Secretary doesn't know how to file briefs)

e You can cast only up and down the tree, not sideways.

Lawyer linda = new Lawyer();
((Secretary) linda) .takeDictation("hi"); // error

e Casting doesn't actually change the object's behavior.
It just gets the code to compile/run.
((Employee) linda) .getVacationForm() // pink

- /

56

Interfaces

Shapes example

e Consider the task of writing classes to represent 2D shapes such as
Circle, Rectangle,and Triangle.

e Certain operations are common to all shapes:
" perimeter: distance around the outside of the shape
" area: amount of 2D space occupied by the shape

= Every shape has these, but each computes them differently.

58

Shape area and perimeter

e Circle (as defined by radius r):
area =T r?
perimeter =27r

e Rectangle (as defined by width w and height h):

W
area=wh
perimeter =2w +2h h
e Triangle (as defined by side lengths a, b, and ¢) .

area=V(s(s-a)(s-b)(s-c))
wheres=%(a+ b +c)
perimeter =a+b+c c

- /

59

Common behavior

e Suppose we have 3 classes Circle, Rectangle, Triangle.
" Each has the methods perimeter and area.

e We'd like our client code to be able to treat different kinds of
shapes in the same way:

= Write a method that prints any shape's area and perimeter.
= Create an array to hold a mixture of the various shape objects.

= Write a method that could return a rectangle, a circle, a triangle, or anyj

other kind of shape.
" Make a DrawingPanel display many shapes on screen.

Interfaces

e interface: A list of methods that a class can promise to implement.

" |nheritance gives you an is-a relationship and code sharing.
e ALawyer can be treated as an Employee and inherits its code.

" |nterfaces give you an is-a relationship without code sharing.
e ARectangle object can be treated as a Shape but inherits no code.

= Analogous to non-programming idea of roles or certifications:

e "I'm certified as a CPA accountant.
This assures you | know how to do taxes, audits, and consulting."

e "I'm 'certified' as a Shape, because | implement the Shape interface.
This assures you | know how to compute my area and perimeter."

Interface syntax

public interface name ({
public type name (type name, ..., type name) ;
public type name (type name, ..., type name) ;

public type name (type name, ..., type name) ;

Example:
public interface Vehicle {
public i1int getSpeed();
public void setDirection(int direction);

Shape interface

// Describes features common to all shapes.
public interface Shape {
public double areal();

public double perimeter (); dnterface»
} Shape
area()
. parimetar)
= Saved as Shape. java =

__

Circle Rectangle Triangle
radius width, height ahc
Circlefradius) Rectangledu,h) Triangleda, b,)
aread aread aread
perimeter() perimeter) perimeter()

e abstract method: A header without an implementation.

= The actual bodies are not specified, because we want to allow each
class to implement the behavior in its own way.

Implementing an interface

public class name implements interface {

}

e A class can declare that it "implements" an interface.

" The class promises to contain each method in that interface.
(Otherwise it will fail to compile.)

= Example:
public class Bicycle implements Vehicle {

}

Interface requirements

public class Banana implements Shape /{
// haha, no methods! pwned

e |f we write a class that claims to be a Shape but doesn't implement
area and perimeter methods, it will not compile.

Banana.java:1: Banana 1s not abstract and does
not override abstract method area () 1n Shape

public class Banana 1mplements Shape {

A

Interfaces + polymorphism

¢ Interfaces benefit the client code author the most.

" they allow polymorphism

(the same code can work with different types of objects)

System.out.println ("area
System.out.println ("perim:
System.out.println();

Circle circ = new Circle(12.0);
Triangle tri new Triangle (5,
printInfo(cire);
printInfo(tri);

public static void printInfo (Shape
System.out.println ("The shape:

w +
w +

12,

s) |

"+ s);
s.area());
s.perimeter());
13);

Abstract Classes

List classes example

e Suppose we have implemented the following two list classes:

" ArraylList index | 0 [1] 2

value |42 -3 |17

" T,1nkedList data | next data | next data | next

front —| 42 +>| -3 | 17 |

= We have a List interface to indicate that both implement a List ADT.

" Problem:
e Some of their methods are implemented the same way (redundancy).

Common code

e Notice that some of the methods are implemented the same way in
both the array and linked list classes.

= 53dd (value)
" contains

= jsEmpty

e Should we change our interface to a class? Why / why not?
= How can we capture this common behavior?

Abstract classes (9.6)

e abstract class: A hybrid between an interface and a class.

= defines a superclass type that can contain method declarations (like an
interface) and/or method bodies (like a class)

= |ike interfaces, abstract classes that cannot be instantiated
(cannot use new to create any objects of their type)

e \What goes in an abstract class?

" implementation of common state and behavior that will be inherited
by subclasses (parent class role)

= declare generic behaviors that subclasses implement (interface role)

70

Abstract class syntax

// declaring an abstract class
public abstract class name {

// declaring an abstract method
// (any subclass must implement it)
public abstract type name (parameters) ;

= Aclass can be abstract even if it has no abstract methods
" You can create variables (but not objects) of the abstract type

71

Abstract and interfaces

e Normal classes that claim to implement an interface must
implement all methods of that interface:

public class Empty implements List {} // error

e Abstract classes can claim to implement an interface without writing
its methods; subclasses must implement the methods.

public abstract class Empty implements List {} // ok

public class Child extends Empty {} // error

72

An abstract list class

// Superclass with common code for a list of integers.
public abstract class AbstractList implements List {
public void add(int value) {
add(size (), wvalue);

}

public boolean contains(int wvalue) {
return indexOf (value) >= 0;

}

public boolean isEmpty () {
return size () == 0;

}

public class ArraylList extends AbstractList { ...

public class LinkedList extends AbstractList { ...

73

Abstract class vs. interface

e \Why do both interfaces and abstract classes exist in Java?
= An abstract class can do everything an interface can do and more.
= So why would someone ever use an interface?

e Answer: Java has single inheritance.
= can extend only one superclass
= can implement many interfaces

= Having interfaces allows a class to be part of a hierarchy
(polymorphism) without using up its inheritance relationship.

74

Inner Classes

Inner classes

e inner class: A class defined inside of another class.
= cah be created as static or non-static

= we will focus on standard non-static ("nested") inner classes

e usefulness:
" inner classes are hidden from other classes (encapsulated)
" inner objects can access/modify the fields of the outer object

Instance of
EnclosingClass Instance of

InnerClass

76

Inner class syntax

// outer (enclosing) class
public class hame {

// inner (nested) class
private class hame {

}

= Only this file can see the inner class or make objects of it.

= Each inner object is associated with the outer object that created it, so
it can access/modify that outer object's methods/fields.

e |f necessary, can refer to outer object as OuterClassName . this

77

Example: Array list iterator

public class ArraylList extends AbstractList {

// not perfect; doesn't forbid multiple removes in a row
private class Arraylterator implements Iterator<Integer> {
private int index; // current position in list

public ArrayIterator () {
index = 0;

}

public boolean hasNext () {
return index < size();

}

public E next () {
index++;
return get(index - 1);

}

public void remove () {
ArraylList.this.remove(index - 1);
index——;

78

