
1

CSE 373

Review of Java

slides created by Marty Stepp

also based on course materials by Stuart Reges

http://www.cs.washington.edu/373/

© University of Washington, all rights reserved.

2

Summary

• These slides contain material about objects, classes, and object-

oriented programming in Java.

• We won't be covering these slides in lecture, but they contain

material you are expected to remember from CSE 142 and 143.

• For additional review material, consult Ch. 1-6 of Core Java.

3

Primitives vs. objects; value
and reference semantics

4

A swap method?

• Does the following swap method work? Why or why not?

public static void main(String[] args) {

int a = 7;

int b = 35;

// swap a with b?

swap(a, b);

System.out.println(a + " " + b);

}

public static void swap(int a, int b) {

int temp = a;

a = b;

b = temp;

}

5

Value semantics

• value semantics: Behavior where values are copied when assigned,

passed as parameters, or returned.

� All primitive types in Java use value semantics.

� When one variable is assigned to another, its value is copied.

� Modifying the value of one variable does not affect others.

int x = 5;

int y = x; // x = 5, y = 5

y = 17; // x = 5, y = 17

x = 8; // x = 8, y = 17

6

Reference semantics (objects)

• reference semantics: Behavior where variables actually store the

address of an object in memory.

� When one variable is assigned to another, the object is

not copied; both variables refer to the same object.

� Modifying the value of one variable will affect others.

int[] a1 = {4, 15, 8};

int[] a2 = a1; // refer to same array as a1

a2[0] = 7;

System.out.println(Arrays.toString(a1)); // [7, 15, 8]

8154value

210index

8157value

210index

a1 a2

7

References and objects

• Arrays and objects use reference semantics. Why?

� efficiency. Copying large objects slows down a program.

� sharing. It's useful to share an object's data among methods.

DrawingPanel panel1 = new DrawingPanel(80, 50);

DrawingPanel panel2 = panel1; // same window

panel2.setBackground(Color.CYAN);

panel1

panel2

8

Objects as parameters

• When an object is passed as a parameter, the object is not copied.

The parameter refers to the same object.

� If the parameter is modified, it will affect the original object.

public static void main(String[] args) {

DrawingPanel window = new DrawingPanel(80, 50);

window.setBackground(Color.YELLOW);
example(window);

}

public static void example(DrawingPanel panel) {

panel.setBackground(Color.CYAN);
...

}
panel

window

9

Arrays as parameters

• Arrays are also passed as parameters by reference.

� Changes made in the method are also seen by the caller.

public static void main(String[] args) {
int[] iq = {126, 167, 95};
increase(iq);
System.out.println(Arrays.toString(iq));

}

public static void increase(int[] a) {
for (int i = 0; i < a.length; i++) {

a[i] = a[i] * 2;
}

}

� Output:
[252, 334, 190]

index 0 1 2

value 126 167 95

index 0 1 2

value 252 334 190

iq

a

10

Arrays pass by reference

• Arrays are also passed as parameters by reference.

� Changes made in the method are also seen by the caller.

public static void main(String[] args) {
int[] iq = {126, 167, 95};
increase(iq);
System.out.println(Arrays.toString(iq));

}

public static void increase(int[] a) {
for (int i = 0; i < a.length; i++) {

a[i] = a[i] * 2;
}

}

� Output:

[252, 334, 190]

index 0 1 2

value 126 167 95

index 0 1 2

value 252 334 190

iq

a

11

Classes and Objects

12

Objects

• object: An entity that encapsulates data and behavior.

� data: variables inside the object

� behavior: methods inside the object

• You interact with the methods;

the data is hidden in the object.

• Constructing (creating) an object:

Type objectName = new Type(parameters);

• Calling an object's method:

objectName.methodName(parameters);

13

Classes

• class: A program entity that represents either:

1. A program / module, or

2. A template for a new type of objects.

– object-oriented programming (OOP): Programs that perform their

behavior as interactions between objects.

– abstraction: Separation between concepts and details.

Objects and classes provide abstraction in programming.

14

Blueprint analogy
iPod blueprint

state:
current song
volume
battery life

behavior:
power on/off
change station/song
change volume
choose random song

iPod #1

state:
song = "1,000,000 Miles"
volume = 17
battery life = 2.5 hrs

behavior:
power on/off
change station/song
change volume
choose random song

iPod #2

state:
song = "Letting You"
volume = 9
battery life = 3.41 hrs

behavior:
power on/off
change station/song
change volume
choose random song

iPod #3

state:
song = "Discipline"
volume = 24
battery life = 1.8 hrs

behavior:
power on/off
change station/song
change volume
choose random song

creates

15

Point objects
import java.awt.*;
...

Point p1 = new Point(5, -2);

Point p2 = new Point(); // origin (0, 0)

• Data:

• Methods:

how far away the point is from point pdistance(p)

adjusts the point's x and y by the given amountstranslate(dx, dy)

sets the point's x and y to the given valuessetLocation(x, y)

DescriptionName

the point's y-coordinatey

the point's x-coordinatex

DescriptionName

16

Point class as blueprint

� The class (blueprint) describes how to create objects.

� Each object contains its own data and methods.

• The methods operate on that object's data.

Point class

state each object should receive:
int x, y

behavior each object should receive:
setLocation(int x, int y)

translate(int dx, int dy)

distance(Point p)

Point object #1

state:
x = 51 y = -2

behavior:
setLocation(int x, int y)

translate(int dx, int dy)

distance(Point p)

Point object #2

state:
x = -24 y = 137

behavior:
setLocation(int x, int y)

translate(int dx, int dy)

distance(Point p)

Point object #3

state:
x = 18 y = 42

behavior:
setLocation(int x, int y)

translate(int dx, int dy)

distance(Point p)

17

Clients of objects

• client program: A program that uses objects.

� Example: Bomb is a client of DrawingPanel and Graphics.

Bomb.java (client program)

public class Bomb {

main(String[] args) {

new DrawingPanel(...)

new DrawingPanel(...)

...

}

}

DrawingPanel.java (class)

public class DrawingPanel {

...

}

18

Fields

• field: A variable inside an object that is part of its state.

– Each object has its own copy of each field.

• Declaration syntax:

private type name;

– Example:

public class Point {

private int x;

private int y;

...

}

19

Encapsulation

• encapsulation: Hiding implementation details from clients.

� Encapsulation enforces abstraction.

• separates external view (behavior) from internal view (state)

• protects the integrity of an object's data

20

Benefits of encapsulation

• Abstraction between object and clients

• Protects object from unwanted access

� Example: Can't fraudulently increase an Account's balance.

• Can change the class implementation later

� Example: Point could be rewritten in polar

coordinates (r, θ) with the same methods.

• Can constrain objects' state (invariants)

� Example: Only allow Accounts with non-negative balance.

� Example: Only allow Dates with a month from 1-12.

21

Instance methods

• instance method (or object method): Exists inside each object of a

class and gives behavior to each object.

public type name(parameters) {

statements;

}

� same syntax as static methods, but without static keyword

Example:

public void tranlate(int dx, int dy) {

x += dx;

y += dy;

}

22

The implicit parameter

• implicit parameter:

The object on which an instance method is being called.

– If we have a Point object p1 and call p1.translate(5, 3);

the object referred to by p1 is the implicit parameter.

– If we have a Point object p2 and call p2.translate(4, 1);

the object referred to by p2 is the implicit parameter.

– The instance method can refer to that object's fields.

•We say that it executes in the context of a particular object.

•translate can refer to the x and y of the object it was called on.

23

Categories of methods

• accessor: A method that lets clients examine object state.

� Examples: distance, distanceFromOrigin

� often has a non-void return type

• mutator: A method that modifies an object's state.

� Examples: setLocation, translate

• helper: Assists some other method in performing its task.

� often declared as private so outside clients cannot call it

24

The toString method

tells Java how to convert an object into a String for printing

public String toString() {

code that returns a String representing this object;

}

� Method name, return, and parameters must match exactly.

� Example:

// Returns a String representing this Point.
public String toString() {

return "(" + x + ", " + y + ")";

}

25

Constructors

• constructor: Initializes the state of new objects.

public type(parameters) {
statements;

}

– runs when the client uses the new keyword

– no return type is specified; implicitly "returns" the new object

public class Point {

private int x;

private int y;

public Point(int initialX, int initialY) {
x = initialX;
y = initialY;

}

26

Multiple constructors

• A class can have multiple constructors.

� Each one must accept a unique set of parameters.

• Example: A Point constructor with no parameters that initializes

the point to (0, 0).

// Constructs a new point at (0, 0).

public Point() {

x = 0;

y = 0;

}

27

The keyword this

•this : Refers to the implicit parameter inside your class.

(a variable that stores the object on which a method is called)

� Refer to a field: this.field

� Call a method: this.method(parameters);

� One constructorthis(parameters);

can call another:

28

Calling another constructor
public class Point {

private int x;

private int y;

public Point() {

this(0, 0);
}

public Point(int x, int y) {
this.x = x;
this.y = y;

}

...

}

• Avoids redundancy between constructors

• Only a constructor (not a method) can call another constructor

29

Comparing objects for
equality and ordering

30

Comparing objects

• The == operator does not work well with objects.

== compares references to objects, not their state.

It only produces true when you compare an object to itself.

Point p1 = new Point(5, 3);

Point p2 = new Point(5, 3);

Point p3 = p2;

// p1 == p2 is false;

// p1 == p3 is false;

// p2 == p3 is true

...

x 5 y 3
p1

p2

...

x 5 y 3

p3

31

The equals method

• The equals method compares the state of objects.

if (str1.equals(str2)) {

System.out.println("the strings are equal");

}

• But if you write a class, its equals method behaves like ==

if (p1.equals(p2)) { // false :-(

System.out.println("equal");

}

� This is the default behavior we receive from class Object.

� Java doesn't understand how to compare new classes by default.

32

The compareTo method (10.2)

• The standard way for a Java class to define a comparison function for

its objects is to define a compareTo method.

� Example: in the String class, there is a method:

public int compareTo(String other)

• A call of A.compareTo(B) will return:

a value < 0 if A comes "before" B in the ordering,

a value > 0 if A comes "after" B in the ordering,

or 0 if A and B are considered "equal" in the ordering.

33

Using compareTo

• compareTo can be used as a test in an if statement.

String a = "alice";

String b = "bob";

if (a.compareTo(b) < 0) { // true

...

}

if (a.compareTo(b) == 0) { ...if (a == b) { ...

if (a.compareTo(b) != 0) { ...if (a != b) { ...

if (a.compareTo(b) >= 0) { ...if (a >= b) { ...

if (a.compareTo(b) > 0) { ...if (a > b) { ...

if (a.compareTo(b) <= 0) { ...if (a <= b) { ...

if (a.compareTo(b) < 0) { ...if (a < b) { ...

ObjectsPrimitives

34

compareTo and collections

• You can use an array or list of strings with Java's included binary

search method because it calls compareTo internally.

String[] a = {"al", "bob", "cari", "dan",
"mike"};

int index = Arrays.binarySearch(a, "dan"); // 3

• Java's TreeSet/Map use compareTo internally for ordering.

Set<String> set = new TreeSet<String>();

for (String s : a) {

set.add(s);

}

System.out.println(s);

// [al, bob, cari, dan, mike]

35

Comparable (10.2)
public interface Comparable<E> {

public int compareTo(E other);

}

• A class can implement the Comparable interface to define a natural

ordering function for its objects.

• A call to your compareTo method should return:

a value < 0 if this object comes "before" the other object,

a value > 0 if this object comes "after" the other object,

or 0 if this object is considered "equal" to the other.

• If you want multiple orderings, use a Comparator instead (see Ch. 13.1)

36

Comparable template
public class name implements Comparable<name> {

...

public int compareTo(name other) {

...

}

}

37

Comparable example
public class Point implements Comparable<Point> {

private int x;
private int y;
...

// sort by x and break ties by y
public int compareTo(Point other) {

if (x < other.x) {

return -1;

} else if (x > other.x) {
return 1;

} else if (y < other.y) {
return -1; // same x, smaller y

} else if (y > other.y) {
return 1; // same x, larger y

} else {
return 0; // same x and same y

}
}

}

38

compareTo tricks

• subtraction trick - Subtracting related numeric values produces the

right result for what you want compareTo to return:

// sort by x and break ties by y
public int compareTo(Point other) {

if (x != other.x) {

return x - other.x; // different x
} else {

return y - other.y; // same x; compare y
}

}

� The idea:

• if x > other.x, then x - other.x > 0

• if x < other.x, then x - other.x < 0

• if x == other.x, then x - other.x == 0

� NOTE: This trick doesn't work for doubles (but see Math.signum)

39

compareTo tricks 2

• delegation trick - If your object's fields are comparable (such as

strings), use their compareTo results to help you:

// sort by employee name, e.g. "Jim" < "Susan"
public int compareTo(Employee other) {

return name.compareTo(other.getName());
}

• toString trick - If your object's toString representation is

related to the ordering, use that to help you:

// sort by date, e.g. "09/19" > "04/01"
public int compareTo(Date other) {

return
toString().compareTo(other.toString());

}

40

Inheritance

41

Inheritance

• inheritance: Forming new classes based on existing ones.

� a way to share/reuse code between two or more classes

� superclass: Parent class being extended.

� subclass: Child class that inherits behavior from superclass.

• gets a copy of every field and method from superclass

� is-a relationship: Each object of the subclass also "is a(n)" object of the

superclass and can be treated as one.

42

Inheritance syntax
public class name extends superclass {

� Example:

public class Lawyer extends Employee {

...

}

• By extending Employee, each Lawyer object now:

� receives a copy of each method from Employee automatically

� can be treated as an Employee by client code

• Lawyer can also replace ("override") behavior from Employee.

43

Overriding Methods

• override: To write a new version of a method in a subclass that

replaces the superclass's version.

� No special syntax required to override a superclass method.

Just write a new version of it in the subclass.

public class Lawyer extends Employee {

// overrides getVacationForm in Employee class
public String getVacationForm() {

return "pink";
}
...

}

44

The super keyword

• A subclass can call its parent's method/constructor:

super.method(parameters) // method

super(parameters); // constructor

public class Lawyer extends Employee {

public Lawyer(String name) {

super(name);
}

// give Lawyers a $5K raise (better)
public double getSalary() {

double baseSalary = super.getSalary();
return baseSalary + 5000.00;

}

}

45

Subclasses and fields
public class Employee {

private double salary;

...

}

public class Lawyer extends Employee {

...

public void giveRaise(double amount) {

salary += amount; // error; salary is private

}

}

• Inherited private fields/methods cannot be directly accessed by

subclasses. (The subclass has the field, but it can't touch it.)

� How can we allow a subclass to access/modify these fields?

46

Protected fields/methods
protected type name; // field

protected type name(type name, ..., type name) {

statement(s); // method

}

• a protected field or method can be seen/called only by:

� the class itself, and its subclasses

� also by other classes in the same "package" (discussed later)

� useful for allowing selective access to inner class implementation

public class Employee {

protected double salary;

...

}

47

Inheritance and constructors

• If we add a constructor to the Employee class, our subclasses do

not compile. The error:

Lawyer.java:2: cannot find symbol

symbol : constructor Employee()

location: class Employee

public class Lawyer extends Employee {

^

� The short explanation: Once we write a constructor (that requires

parameters) in the superclass, we must now write constructors for our

employee subclasses as well.

48

Inheritance and constructors

• Constructors are not inherited.

� Subclasses don't inherit the Employee(int) constructor.

� Subclasses receive a default constructor that contains:

public Lawyer() {

super(); // calls Employee() constructor

}

• But our Employee(int) replaces the default Employee().

� The subclasses' default constructors are now trying to call a non-

existent default Employee constructor.

49

Calling superclass constructor

super(parameters);

� Example:

public class Lawyer extends Employee {

public Lawyer(int years) {

super(years); // calls Employee c'tor

}

...

}

� The super call must be the first statement in the constructor.

50

Polymorphism

51

Polymorphism

• polymorphism: Ability for the same code to be used with different

types of objects and behave differently with each.

� System.out.println can print any type of object.

• Each one displays in its own way on the console.

� CritterMain can interact with any type of critter.

• Each one moves, fights, etc. in its own way.

52

Coding with polymorphism

• A variable of type T can hold an object of any subclass of T.

Employee ed = new Lawyer();

� You can call any methods from the Employee class on ed.

• When a method is called on ed, it behaves as a Lawyer.

System.out.println(ed.getSalary()); // 50000.0

System.out.println(ed.getVacationForm()); // pink

53

Polymorphic parameters
• You can pass any subtype of a parameter's type.

public static void main(String[] args) {

Lawyer lisa = new Lawyer();

Secretary steve = new Secretary();

printInfo(lisa);
printInfo(steve);

}

public static void printInfo(Employee e) {
System.out.println("pay : " + e.getSalary());

System.out.println("vdays: " + e.getVacationDays());

System.out.println("vform: " + e.getVacationForm());

System.out.println();

}

OUTPUT:

pay : 50000.0 pay : 50000.0
vdays: 15 vdays: 10
vform: pink vform: yellow

54

Polymorphism and arrays

• Arrays of superclass types can store any subtype as elements.

public static void main(String[] args) {

Employee[] e = {new Lawyer(), new Secretary(),

new Marketer(), new LegalSecretary()};

for (int i = 0; i < e.length; i++) {

System.out.println("pay : " + e[i].getSalary());

System.out.println("vdays: " + i].getVacationDays());

System.out.println();

}

}

Output:

pay : 50000.0 pay : 60000.0
vdays: 15 vdays: 10

pay : 50000.0 pay : 55000.0
vdays: 10 vdays: 10

55

Casting references

• A variable can only call that type's methods, not a subtype's.

Employee ed = new Lawyer();

int hours = ed.getHours(); // ok; in Employee

ed.sue(); // compiler error

� The compiler's reasoning is, variable ed could store any kind of

employee, and not all kinds know how to sue .

• To use Lawyer methods on ed, we can type-cast it.

Lawyer theRealEd = (Lawyer) ed;

theRealEd.sue(); // ok

((Lawyer) ed).sue(); // shorter version

56

More about casting

• The code crashes if you cast an object too far down the tree.

Employee eric = new Secretary();

((Secretary) eric).takeDictation("hi"); // ok

((LegalSecretary) eric).fileLegalBriefs(); // error

// (Secretary doesn't know how to file briefs)

• You can cast only up and down the tree, not sideways.

Lawyer linda = new Lawyer();

((Secretary) linda).takeDictation("hi"); // error

• Casting doesn't actually change the object's behavior.

It just gets the code to compile/run.

((Employee) linda).getVacationForm() // pink

57

Interfaces

58

Shapes example

• Consider the task of writing classes to represent 2D shapes such as

Circle, Rectangle, and Triangle.

• Certain operations are common to all shapes:

� perimeter: distance around the outside of the shape

� area: amount of 2D space occupied by the shape

� Every shape has these, but each computes them differently.

59

Shape area and perimeter

• Circle (as defined by radius r):

area = π r 2

perimeter = 2 π r

• Rectangle (as defined by width w and height h):

area = w h

perimeter = 2w + 2h

• Triangle (as defined by side lengths a, b, and c)

area = √(s (s - a) (s - b) (s - c))

where s = ½ (a + b + c)

perimeter = a + b + c

r

w

h

a

b

c

60

Common behavior

• Suppose we have 3 classes Circle, Rectangle, Triangle.

� Each has the methods perimeter and area.

• We'd like our client code to be able to treat different kinds of

shapes in the same way:

� Write a method that prints any shape's area and perimeter.

� Create an array to hold a mixture of the various shape objects.

� Write a method that could return a rectangle, a circle, a triangle, or any

other kind of shape.

� Make a DrawingPanel display many shapes on screen.

61

Interfaces

• interface: A list of methods that a class can promise to implement.

� Inheritance gives you an is-a relationship and code sharing.

• A Lawyer can be treated as an Employee and inherits its code.

� Interfaces give you an is-a relationship without code sharing.

• A Rectangle object can be treated as a Shape but inherits no code.

� Analogous to non-programming idea of roles or certifications:

• "I'm certified as a CPA accountant.

This assures you I know how to do taxes, audits, and consulting."

• "I'm 'certified' as a Shape, because I implement the Shape interface.

This assures you I know how to compute my area and perimeter."

62

Interface syntax
public interface name {

public type name(type name, ..., type name);

public type name(type name, ..., type name);

...

public type name(type name, ..., type name);

}

Example:

public interface Vehicle {

public int getSpeed();

public void setDirection(int direction);

}

63

Shape interface
// Describes features common to all shapes.

public interface Shape {

public double area();

public double perimeter();

}

� Saved as Shape.java

• abstract method: A header without an implementation.

� The actual bodies are not specified, because we want to allow each

class to implement the behavior in its own way.

64

Implementing an interface
public class name implements interface {

...

}

• A class can declare that it "implements" an interface.

� The class promises to contain each method in that interface.

(Otherwise it will fail to compile.)

� Example:

public class Bicycle implements Vehicle {

...

}

65

Interface requirements
public class Banana implements Shape {

// haha, no methods! pwned

}

• If we write a class that claims to be a Shape but doesn't implement
area and perimeter methods, it will not compile.

Banana.java:1: Banana is not abstract and does

not override abstract method area() in Shape

public class Banana implements Shape {

^

66

Interfaces + polymorphism

• Interfaces benefit the client code author the most.

� they allow polymorphism

(the same code can work with different types of objects)

public static void printInfo(Shape s) {

System.out.println("The shape: " + s);

System.out.println("area : " + s.area());

System.out.println("perim: " + s.perimeter());

System.out.println();

}

...

Circle circ = new Circle(12.0);

Triangle tri = new Triangle(5, 12, 13);

printInfo(circ);

printInfo(tri);

67

Abstract Classes

68

List classes example

• Suppose we have implemented the following two list classes:

� ArrayList

� LinkedList

� We have a List interface to indicate that both implement a List ADT.

� Problem:

• Some of their methods are implemented the same way (redundancy).

17-342value

210index

front 42

nextdata

-3

nextdata

17

nextdata

69

Common code

• Notice that some of the methods are implemented the same way in

both the array and linked list classes.

� add(value)

� contains

� isEmpty

• Should we change our interface to a class? Why / why not?

� How can we capture this common behavior?

70

Abstract classes (9.6)

• abstract class: A hybrid between an interface and a class.

� defines a superclass type that can contain method declarations (like an

interface) and/or method bodies (like a class)

� like interfaces, abstract classes that cannot be instantiated

(cannot use new to create any objects of their type)

• What goes in an abstract class?

� implementation of common state and behavior that will be inherited

by subclasses (parent class role)

� declare generic behaviors that subclasses implement (interface role)

71

Abstract class syntax
// declaring an abstract class

public abstract class name {

...

// declaring an abstract method

// (any subclass must implement it)

public abstract type name(parameters);

}

� A class can be abstract even if it has no abstract methods

� You can create variables (but not objects) of the abstract type

72

Abstract and interfaces

• Normal classes that claim to implement an interface must

implement all methods of that interface:

public class Empty implements List {} // error

• Abstract classes can claim to implement an interface without writing

its methods; subclasses must implement the methods.

public abstract class Empty implements List {} // ok

public class Child extends Empty {} // error

73

An abstract list class
// Superclass with common code for a list of integers.

public abstract class AbstractList implements List {

public void add(int value) {

add(size(), value);

}

public boolean contains(int value) {

return indexOf(value) >= 0;

}

public boolean isEmpty() {

return size() == 0;

}

}

public class ArrayList extends AbstractList { ...

public class LinkedList extends AbstractList { ...

74

Abstract class vs. interface

• Why do both interfaces and abstract classes exist in Java?

� An abstract class can do everything an interface can do and more.

� So why would someone ever use an interface?

• Answer: Java has single inheritance.

� can extend only one superclass

� can implement many interfaces

� Having interfaces allows a class to be part of a hierarchy

(polymorphism) without using up its inheritance relationship.

75

Inner Classes

76

Inner classes

• inner class: A class defined inside of another class.

� can be created as static or non-static

� we will focus on standard non-static ("nested") inner classes

• usefulness:

� inner classes are hidden from other classes (encapsulated)

� inner objects can access/modify the fields of the outer object

77

Inner class syntax
// outer (enclosing) class
public class name {

...

// inner (nested) class
private class name {

...

}

}

� Only this file can see the inner class or make objects of it.

� Each inner object is associated with the outer object that created it, so

it can access/modify that outer object's methods/fields.

• If necessary, can refer to outer object as OuterClassName.this

78

Example: Array list iterator
public class ArrayList extends AbstractList {

...

// not perfect; doesn't forbid multiple removes in a row
private class ArrayIterator implements Iterator<Integer> {

private int index; // current position in list

public ArrayIterator() {
index = 0;

}

public boolean hasNext() {
return index < size();

}

public E next() {
index++;
return get(index - 1);

}

public void remove() {
ArrayList.this.remove(index - 1);
index--;

}
}

}

