
CSE 373 Practice Midterm Exam #3
(Section Handout #7)

1. Big-Oh Analysis
Give a tight bound of the runtime complexity class for each of the following code fragments in Big-Oh notation, in  
terms of the variable N.

a)
int sum = 0;
for (int i = 0; i < N; i++) {
    if (i == N - 1) {
        for (int j = 0; j < N; j++) {
            sum++;
        }
    }
}
System.out.println(sum);

b)
Map<Integer, Integer> map =
    new TreeMap<Integer, Integer>();
for (int i = 1; i < N; i++) {
    map.put(i, N * N);
}
map.clear();
System.out.println("done!");

c)
int sum = 0;
for (int i = 0; i < N; i++) {
    sum++;
}
for (int i = 100*N; i >= 0; i--) {
    sum++;
}
System.out.println(sum);

d)
List<Integer> list =
        new LinkedList<Integer>();
for (int i = 0; i < N; i++) {
    list.add(i);
}
int sum = 0;
for (int i = 0; i < N; i++) {
    sum += list.get(i);
}
System.out.println("done!");
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2. Java / Guava Collection Programming
You are writing code for a game show called Family Fracas.  Write a method named rankFamilies that accepts a 
Guava Table of strings and strings to integers.  The rows represent last names and the columns represent first names;  
the values are the number of points earned by the person with that first and last name.  Your method should return a  
List of last names, ordered by how many points were earned by the people in that family (the people with that last  
name).  Families that earned more points should appear earlier in the list.  For example:

Bobby Jackie Alex Jordan Mary
Smith 30 17 67
Chen 75 14 26

Rivera 32 49 25
Mitchell 18 107 3

According to the table above, Alex Mitchell earned 107 points, Mary Rivera earned 25 points, etc.  The Smith family 
earned 114 points, the Chens earned 115 points, the Riveras earned 106 points, and the Mitchells earned 128 points,  
so your method will return the list [Mitchell, Chen, Smith, Rivera].  You may assume that the Table and 
its elements are not null and that no two families will earn exactly the same number of points.  Your code should not  
modify the table passed in.  Your method must run in O(N log N) time or better, where N is the number of people in 
the Table.
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3. Java Class Programming for Collections
Suppose you are given the following class Car, representing an automobile:

public class Car {
    private String make;        // such as "Toyota"
    private String model;       // such as "Camry"
    private int year;           // such as 2011
    private Color color;
    ...
}
Write an equals and hashCode method for the Car class.  Two cars should be considered equal if they have the 
same state: make, model, year, and color.  Your hash code function should distribute codes effectively among cars.
Also give  Car objects a natural ordering by modifying the class to  implement the  Comparable interface.  Cars 
should be arranged by make in ABC order (e.g. Honda before Toyota), breaking ties by year (e.g. 2004 before 2011),  
then breaking ties by model (e.g. Camry before Prius), and finally breaking ties by color.  You may assume that 
Color objects implement the Comparable interface.
You may assume that the fields' values are not null.  You may assume that null is not passed to your compareTo 
method, though null might be passed to equals and you should handle it appropriately by returning false.
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4. Hashing
Simulate the behavior of a hash set as described in lecture. Assume the following:

• the hash table array has an initial capacity of 10
• the hash table uses separate chaining for collision resolution 
• the hash function returns the integer key's value, mod the size of the table
• rehashing occurs at the end of an add where the load factor is ≥ 0.5 and doubles the capacity of the hash table

Draw an array diagram to show the final state of the hash table after the following operations are performed.  Leave a  
box empty if an array element is null or is unused.  Also write the size, capacity, and load factor of the final hash 
table.  You do not have to redraw an entirely new hash table after each element is added or removed, but since the  
final  answer  depends  on  every add/remove  being  done  correctly,  you  may wish  to  redraw the  table  at  various  
important stages to help earn partial credit in case of an error.

Set<Integer> set = new HashSet<Integer>();
set.add(47);
set.add(97);
set.add(52);
set.add(-34);
set.remove(4);
set.remove(52);
set.add(44);
set.add(77);
set.add(-232);
set.add(-4);
set.add(444);
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5. Heaps
Given the following string elements:

• Chuck, Sarah, Casey, Morgan, Beckman, Awesome, Ellie, Jeff, Lester

a) Draw the tree representation of the binary min-heap that results when all of the above elements are added (in the 
given order) to an initially empty heap.  Circle the final tree that results from performing the additions.  Also show the  
final array representation of the heap.

b) After adding all the elements, perform 2 remove-min operations on the heap.  Circle the tree that results after the 
two elements are removed.  Also show the final array representation of the heap.

Please show your work. You do not have to draw an entirely new tree after each element is added or removed, but  
since the final answer depends on every add/remove being done correctly, you may wish to show the tree at various  
important stages to help earn partial credit in case of an error.
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6. AVL Trees
Given the following string elements:

• Drew, Jared, Matt, Alex, Bethy, Sara, Corey, Grace, Brad, Ben

a) Draw the AVL tree that results when all of the above elements are added (in the given order) to an initially empty  
AVL tree.

Please show your work. You do not have to draw an entirely new tree after each element is added or removed, but  
since the final answer depends on every add/remove being done correctly, you may wish to show the tree at various  
important stages to help earn partial credit in case of an error.

b) Draw the AVL tree from part (a) after all of the following elements are removed:

• Jared, Sara, Matt, Corey

c) Write the balance factor of every node of the AVL tree that you drew for part (b), to the right of that node.
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7. Hash Set Implementation
In lecture, we implemented a class called HashSet, a set of elements implemented using a hash table with separate 
chaining.  Assume that the class is implemented in the following way:

public class HashSet<E> implements Set<E> {
    private Node[] elements;
    private int size;
    ...
    private class Node {
        private E data;
        private Node next;
        ...
    }
}
Add a method to this class named removeInRange that accepts a minimum and maximum value and removes from 
the set any elements that are between the given minimum and maximum, inclusive.  For example, if a hash set in a 
variable set stores [31, 12, 22, 45, 6, 28, 18, 59], after calling set.removeInRange(10, 30); , the 
set should store [31, 45, 6, 59].  You should assume that the element type E is comparable and cast it to type 
Comparable so that you can determine which elements are in the given range.  You should not create any arrays or  
temporary data structures.  This method should run in O(N) time, where N is the number of total elements stored in 
the set.
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