
CSE 373 Practice Midterm Exam #2

1. Big-Oh Analysis
Give a tight bound of the runtime complexity class for each of the following code fragments in Big-Oh notation, in
terms of the variable N.

a)
int sum = 0;
for (int i = 0; i < N * 2; i++) {
 for (int j = 0; j < i / 3; j++) {
 for (int k = 0; k < j*j; k+=3) {
 sum++;
 }
 }
}
System.out.println(sum);

b)
int sum = 0;
for (int i = 1; i < N; i *= 2) {
 for (int j = 1; j < N; j *= 2) {
 sum++;
 }
}
System.out.println(sum);

c)
Set<Integer> set1 =
 new HashSet<Integer>();
for (int i = 0; i < N; i++) {
 set1.add(i);
}
Set<Integer> set2 =
 new TreeSet<Integer>();
set2.addAll(set1);
System.out.println("done!");

d)
List<Integer> list =
 new LinkedList<Integer>();
for (int i = 0; i < N; i++) {
 list.add(0, i);
}
Set<Integer> set = new TreeSet<Integer>();
Iterator<Integer> itr = list.iterator();
while (itr.hasNext()) {
 set.add(itr.next());
}
System.out.println("done!");

e)
List<Integer> list1 =
 new ArrayList<Integer>();
for (int i = 0; i < N; i += 2) {
 list1.add(i);
}
List<Integer> list2 =
 new ArrayList<Integer>();
for (int i = 0; i < N; i++) {
 list2.add(0, list1.remove(0));
}
System.out.println("done!");

f)
int sum = 0;
for (int i = 0; i < N * 2; i++) {
 for (int j = 0; j < 10000; j++) {
 for (int k = 0; k < j*j; k++) {
 sum++;
 }
 }
}
System.out.println(sum);

1 of 7

2. Java / Guava Collection Programming
Write a method named friends that checks whether a group of Facebook users are all friends with each other. The
method accepts two parameters: a Multimap from Facebook user names (strings) to their friends' user names
(strings), and a List of user names (strings) to check. If all of the users in the list are friends with all of the other
users, your method should return true. If any user is not friends with any other user, your method should return
false. For example, if passed the multimap {Joe=[Bill], Ed=[Joe], Bill=[Joe, Ed, Sue],
Sue=[Bill, Joe, Ed]} and the list [Sue, Joe, Bill], your method would return false because Joe is not
friends with Bill. If the same collections were passed except Joe's friends were Joe=[Bill, Sue], the method
would return true. Note that you must check friendship in both directions; e.g. Sue must be friends with Joe, and Joe
must be friends with Sue.
Your code should run in no worse than O(N2) time where N is the number of names in the list. You may assume that
the collections passed and their elements are not null.

2 of 7

3. Java Class Programming for Collections
Suppose you are given the following class Person, representing a person in the Stable Marriage simulation:

public class Person {
 private String name;
 private String gender; // either "M" or "F"
 private Person fiancee; // null if single
 private Queue<String> preferences;
 ...
}
Write an equals and hashCode method for the Person class. Two persons should be considered equal if they
have the same name, gender, preferences, and fiancee. Your hash code function should distribute codes effectively
among persons. Be mindful that your methods should not produce infinite recursion by calling them on other Person
objects. To get around this, you can compare fiancees using == in the equals method, and simply incorporate
whether the person has a fiancee as a true/false value in your hashCode.
Also write a Comparator that arranges persons by gender (men first, then women), arranging in alphabetical order
by name within each gender.
You may assume that the name, gender, and preferences are not null, but the fiancee could be. You may assume that
null is not passed to your Comparator, though null might be passed to your equals method and you should
handle it appropriately by returning false.

3 of 7

4. Hashing
Simulate the behavior of a hash map as described in lecture. Assume the following:

• the hash table array has an initial capacity of 5
• the hash table uses separate chaining for collision resolution
• the hash function returns the integer key's value, mod the size of the table
• rehashing occurs at the end of an add where the load factor is ≥ 0.6 and doubles the capacity of the hash table

Draw an array diagram to show the final state of the hash table after the following operations are performed. Leave a
box empty if an array element is null or is unused. Also write the size, capacity, and load factor of the final hash
table. You do not have to redraw an entirely new hash table after each element is added or removed, but since the
final answer depends on every add/remove being done correctly, you may wish to redraw the table at various
important stages to help earn partial credit in case of an error.

Map<Integer, Integer> map = new HashMap<Integer, Integer>();
map.put(17, 42);
map.put(21, 8);
map.put(2, 8);
map.remove(21);
map.put(31, 17);
if (map.containsKey(8)) {
 map.remove(31);
}
map.put(72, 5);
map.remove(17);
map.put(2, 3);

4 of 7

5. Heaps
Given the following integer elements:

• 17, 63, 40, 95, 13, 10, 12, 43, 47, 15, 82

a) Draw the tree representation of the binary min-heap that results when all of the above elements are added (in the
given order) to an initially empty heap. Circle the final tree that results from performing the additions. Also show the
final array representation of the heap.

b) After adding all the elements, perform 2 remove-min operations on the heap. Circle the tree that results after the
two elements are removed. Also show the final array representation of the heap.

Please show your work. You do not have to draw an entirely new tree after each element is added or removed, but
since the final answer depends on every add/remove being done correctly, you may wish to show the tree at various
important stages to help earn partial credit in case of an error.

5 of 7

6. AVL Trees
Given the following integer elements:

• 65, 30, 40, 48, 73, 51, 45, 47, 42, 43, 20, 35, 10

a) Draw the AVL tree that results when all of the above elements are added (in the given order) to an initially empty
AVL tree.

Please show your work. You do not have to draw an entirely new tree after each element is added or removed, but
since the final answer depends on every add/remove being done correctly, you may wish to show the tree at various
important stages to help earn partial credit in case of an error.

b) Draw the AVL tree from part (a) after all of the following elements are removed:

• 40, 45, 30, 47, 42, 43

6 of 7

7. Deque Implementation
In lecture, we implemented a class called ArrayDeque, a circular buffer array representing a double-ended queue.
Assume that the class is implemented in the following way:

public class ArrayDeque<E> implements Deque<E> {
 private E[] elements;
 private int size;
 private int front;
 ...
}
Add a method to this class named reverse that reverses the order of the elements in the deque. For example, if a
deque in a variable d stores [42, 17, -9, 83, 25], after calling d.reverse(); , the deque should store [25,
83, -9, 17, 42]. The reversal should be done "in place" without creating any new arrays or temporary data
structures. This method should run in O(N) time, where N is the number of total elements stored in the deque.

7 of 7

