Problem 1 (7 pts)

Order the following functions by growth rate. Indicate which functions grow at the same rates.
\(N, \sqrt{N}, N^{1.5}, N^2, N \log N, N \log \log N, N \log^2 N, N \log(N^2), 2/N, 2^N, 2^{N/2}, 37, N^2 \log N, N^3 \)

Problem 2 (18 pts)

For this problem, you will need to write some code in Java. We’ve provided everything you need to get started in the Java skeleton file located at http://www.cs.washington.edu/education/courses/cse373/13sp/homework/hw02/HW2Prob2.java

For each of the following six program fragments:

Give an analysis of the running time. Big-Oh will suffice.

Then, implement the code in Java, and give the running time (in milliseconds) for the several values of \(n \) listed in the table below. We’ve set up the skeleton files to make this easier: Look for an ”INSERT YOUR CODE HERE” comment; that is where you will add your code. The skeleton is set up to read the value of \(n \) from the command line (e.g. `java HW2Prob2 2000`).

<table>
<thead>
<tr>
<th>Big-Oh</th>
<th>(n=20)</th>
<th>(n=200)</th>
<th>(n=2000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Finally, using the completed table above, compare your analysis with the actual running times and discuss.
The six fragments:

1. sum = 0;
 for (i=0; i<n; i++)
 sum++;

2. sum = 0;
 for (i=0; i<n; i++)
 for (j=0; j<n; j++)
 sum++;

3. sum = 0;
 for (i=0; i<n; i++)
 for (j=0; j<n*n; j++)
 sum++;

4. sum = 0;
 for (i=0; i<n; i++)
 for (j=0; j<i; j++)
 sum++;

5. sum = 0;
 for (i=0; i<n; i++)
 for (j=0; j<i*i; j++)
 for (k=0; k<j; k++)
 sum++;

6. sum = 0;
 for (i=1; i<n; i++)
 for (j=1; j<i*i; j++)
 if (j % i == 0)
 for (k=0; k<j; k++)
 sum++;

Problem 3 (8 pts)

Consider the following algorithm (known as Horner’s rule) to evaluate \(f(x) = \sum_{i=0}^{N} a_i x^i \):

poly = 0;
for(i = n; i >= 0; i--)
 poly = x * poly + a[i];

1. Show how the steps are performed by this algorithm for \(x = 3, f(x) = 4x^4 + 8x^3 + x + 2 \) by filling out the table. Remember that the array \(a[] \) contains the coefficients of the various powers of \(x \).
2. What is the running time of this algorithm? Give your answer in Big-Oh form and explain how you reached that conclusion.

Problem 4 (5 pts)

Show that the function $6n^3 + 30n + 403$ is $O(n^3)$.

You will need to use the formal definition of $O(f(n))$ to do this (see Weiss p29). In other words, find values for c and n_0 such that the definition of Big-Oh holds true as we did with the examples in lecture.

Problem 5 (8 pts)

Given the following recursive search function, prove by induction that it correctly returns 1 if the value `val` is in the array `v` and 0 otherwise. (Hint: try working out all the possibilities for arrays of `size = 1` to get a sense of how your proof should proceed.)

```c
int search(v[]: integer array, size: integer, val: integer)
    if (size == 0) return 0;
    else
        if (v[size-1] == val) return 1;
        else return search(v, size-1, val);
```

You will need to provide at least these details in a complete proof:

Basis: The case where `size = 0`

Inductive Hypothesis: Assume...

Inductive Step: