CSE373: Data Structures & Algorithms

Lecture 7: Binary Heaps, Continued

Dan Grossman
Fall 2013

(10)

(207 (80)
(40) GO B QL

(7000 (500

insert

* Priority Queue ADT: insert comparable object, deleteMin

* Binary heap data structure: Complete binary tree where each
node has priority value greater than its parent

¢ O(height-of-tree)=O(1log n) insert and deleteMin operations
— insert: put at new last position in tree and percolate-up

- deleteMin: remove root, put last element at root and
percolate-down

But: tracking the “last position” is painful and we can do better

Fall 2013 CSE373: Data Structures & Algorithms 2

Array Representation of Binary Trees

From node i:

left child: 1*2
right child: 1*2+1
parent: 1/2

(wasting index O is
convenient for the
Index arithmetic)
iImplicit (array) implementation:

A | B | C|D|E F | G| H I J K| L

0 1 2 3 4 3) 6 I 8 9 10 11 12

Fall 2013 CSE373: Data StruBtures & Algorithms

13

MAN, YOURE BEING IN(ONSISTENT
WITH YOUR ARRAY INDICES. SOME
ARE FRoM ONE, 50ME. FROM ZERD.

DIFFERENT TASks CALL FOR
DIFFERENT CONVENTIONS. TO
QRUOTE STANFORD AWGOR ITHMS
EXERT DONALD KNUTH,

“WHO ARE you? How DID_
YOU GET IN MY HOUSE?
/

VAIT WHAT?

[WELL, THATS WHAT HE
SAID WHEN | ASKED
Him ABOUT IT.

http://xkcd.com/163

Fall 2013 CSE373: Data Structures & Algorithms

Judging the array implementation

Plusses:
* Non-data space: just index 0 and unused space on right

— In conventional tree representation, one edge per node
(except for root), so n-1 wasted space (like linked lists)

— Array would waste more space if tree were not complete

« Multiplying and dividing by 2 is very fast (shift operations in
hardware)
« Last used position is just index size

Minuses:

« Same might-by-empty or might-get-full problems we saw with
stacks and queues (resize by doubling as necessary)

Plusses outweigh minuses: “this is how people do it”

Fall 2013 CSE373: Data Structures & Algorithms

Pseudocode: insert

void insert(int wval) {
if (size==arr.length-1)
resize() ;
size++;
i=percolateUp(size,val)

This pseudocode uses ints. In real use,
you will have data nodes with priorities.

int percolateUp(int hole,
int val) {
while (hole > 1 &&
val < arr[hole/2])
arr[hole] = arr[hole/2];
hole = hole / 2;

arr[i] = wval; }
}) return hole;
(102
(20 (80
(40 60 G5 D
(700) (50
10 | 20 | 80 | 40 | 60 | 8 | 99 | 700 | 50

0 1 2 3 4 5 6

Fall 2013

7 8 9 10 11 12 13

CSE373: Data Structures & Algorithms 6

This pseudocode uses ints. In real use,

PSGUdOCOde: deletEM | N you will have data nodes with priorities.

int deleteMin () { int percolateDown (int hole,
int val) {

if (isEmpty()) throw.. while (2*¥hole <= size) {

ans = arr[l1]; left = 2*hole;
hole = percolateDown right = left + 1;
(1,arr[size]) ; if(arr[left] < arr[right]
arr[hole] = arr[size]; || right > size)
_ ! target = left;
Slze——, else
return ans; target = right;
} if (arr[target] < wval) {
arr [hole] = arr[target];
(103 hole = target;
} else
0] 80) break;
20 @@ G @D }
706) (50 }return hole;

10 | 20 | 80 | 40 | 60 | 85 | 99 | 700 | 50

0 1 2 3 4 3) 6 I 8 9 10 11 12 13
Fall 2013 CSE373: Data Structures & Algorithms 7

Example

1. insert: 16, 32, 4, 69, 105, 43, 2
2. deleteMin

Fall 2013 CSE373: Data Structures & Algorithms

Other operations

« decreaseKey: given pointer to object in priority queue (e.qg., its
array index), lower its priority value by p
— Change priority and percolate up

« increaseKey: given pointer to object in priority queue (e.qg., its
array index), raise its priority value by p
— Change priority and percolate down

« remove: given pointer to object in priority queue (e.g., its array
Index), remove it from the queue

— decreaseKey with p = o0, then deleteMin

Running time for all these operations?

Fall 2013 CSE373: Data Structures & Algorithms

Build Heap

Suppose you have n items to put in a new (empty) priority queue
— Call this operation buildHeap

N inserts works
— Only choice if ADT doesn’t provide buildHeap explicitly

— O(n logn)

Why would an ADT provide this unnecessary operation?
— Convenience
— Efficiency: an O(n) algorithm called Floyd’s Method

— Common issue in ADT design: how many specialized
operations

Fall 2013 CSE373: Data Structures & Algorithms 10

Floyd’s Method

1. Use nitems to make any complete tree you want
— Thatis, put them in array indices 1,...,n

2. Treat it as a heap and fix the heap-order property

— Bottom-up: leaves are already in heap order, work up
toward the root one level at a time

void buildHeap () {
for(i = size/2; i>0; i--) {

val = arr[i];
hole = percolateDown (i,val) ;
arr[hole] = val;

}

Fall 2013 CSE373: Data Structures & Algorithms 11

Example

In tree form for readability @

— Purple for node not less than
descendants

* heap-order problem @ @
— Notice no leaves are purple

— Check/fix each non-leaf
bottom-up (6 steps here) 9 @ 9 @

@EOOOE

Fall 2013 CSE373: Data Structures & Algorithms 12

Happens to already be less than children (er, child)

Fall 2013 CSE373: Data Structures & Algorithms 13

@OOOE @EOOWOE

Percolate down (notice that moves 1 up)

Fall 2013 CSE373: Data Structures & Algorithms 14

Example

(12) Step 3> (12)

(5] @ (5] @
3 @@ @ @0 @ O @ @
O@EOOOE @EOOWOE

« Another nothing-to-do step

Fall 2013 CSE373: Data Structures & Algorithms 15

3 O @ 0 & O © C
O@EOOOE @O

Percolate down as necessary (steps 4a and 4b)

Fall 2013 CSE373: Data Structures & Algorithms 16

Fall 2013 CSE373: Data Structures & Algorithms 17

Fall 2013 CSE373: Data Structures & Algorithms 18

But Is It right?

« “Seems to work”
— Let’s prove it restores the heap property (correctness)
— Then let’s prove its running time (efficiency)

void buildHeap () {
for(i = size/2; i>0; i--) {

val = arr[i];
hole = percolateDown (i,val) ;
arr[hole] = val;

}

Fall 2013 CSE373: Data Structures & Algorithms

19

Correctness

void buildHeap () {
for(i = size/2; i>0; i--) {

val = arr[i];
hole = percolateDown (i,val) ;
arr[hole] = val;

}
}

Loop Invariant: For all §>i, arr[3j] is less than its children
« Trueinitially: If § > size/2,then jis aleaf
— Otherwise its left child would be at position > size

« True after one more iteration: loop body and percolateDown
make arr[i] less than children without breaking the property
for any descendants

So after the loop finishes, all nodes are less than their children

Fall 2013 CSE373: Data Structures & Algorithms 20

Efficiency

void buildHeap () {
for(i = size/2; i>0; i--) {

val = arr[i];
hole = percolateDown (i,val) ;
arr[hole] = val;

}
}

Easy argument: buildHeap is O(n 1og n) where n is size
« size/2 loop iterations
« Each iteration does one percolateDown, each is O(1og n)

This is correct, but there is a more precise (“tighter”) analysis of
the algorithm...

Fall 2013 CSE373: Data Structures & Algorithms

Efficiency

void buildHeap () {
for(i = size/2; i>0; i--) {

val = arr[i];
hole = percolateDown (i,val) ;
arr[hole] = val;

}
}

Better argument: buildHeap is O(n) where nis size
« size/2 total loop iterations: O(n)

« 1/2 the loop iterations percolate at most 1 step

« 1/4 the loop iterations percolate at most 2 steps

« 1/8 the loop iterations percolate at most 3 steps

 ((1/2) + (2/4) + (3/8) + (4/16) + (5/32) + ...) < 2 (page 4 of Weiss)
— So at most 2 (size/2) total percolate steps: O(n)

Fall 2013 CSE373: Data Structures & Algorithms 22

Lessons from buildHeap

* Without buildHeap, our ADT already let clients implement their
own in O(n log n) worst case

— Worst case Is inserting lower priority values later

* By providing a specialized operation internal to the data structure
(with access to the internal data), we can do O(n) worst case

— Intuition: Most data is near a leaf, so better to percolate down

« Can analyze this algorithm for:
— Correctness:
* Non-trivial inductive proof using loop invariant
— Efficiency:
 First analysis easily proved it was O(n 1og n)
« Tighter analysis shows same algorithm is O(n)

Fall 2013 CSE373: Data Structures & Algorithms 23

Other branching factors

« d-heaps: have d children instead of 2

— Makes heaps shallower, useful for heaps too big for memory
(or cache)

« Homework: Implement a 3-heap
— Just have three children instead of 2
— Still use an array with all positions from 1...heap-size used
2,3,4
5,6,7
8,9,10
11,12,13
14,15,16

a ~ W N B

Fall 2013 CSE373: Data Structures & Algorithms 24

What we are skipping

« merge: given two priority queues, make one priority queue
— How might you merge binary heaps:
* If one heap is much smaller than the other?
« If both are about the same size?

— Different pointer-based data structures for priority queues
support logarithmic time merge operation (impossible with

binary heaps)
 Leftist heaps, skew heaps, binomial queues
« Worse constant factors
« Trade-offs!

Fall 2013 CSE373: Data Structures & Algorithms 25

