Today’s Outline

e Admin:
— Final Exam — Tuesday Marcht,3opic list posted soon
— HW #6 — Sorting, due Fri March 9 at 11pm

B-Trees
(4.7 in Weiss) . Sorting
— In-place and Stable Sorting
CSE 373 . Dl(gl-?narles
. — B-Trees
Data Structures & Algorithms
Ruth Anderson
3/05/2012 3/05/2012 2
Trees SO far cPU Time to access:
(has registers) 1 ns per instruction

* BST

« AVL

3/05/2012

SRAM Cache

Cache
8KB - 4MB 2.10ns

Main Memory
DRAM Main Memory
up to 10(GB 40-100 ns
I
Disk Disk afew
many GB s 1SX milliseconds
(5-10 Million ns)
3/05/2012 4

M-ary Search Tree
O

* Maximum branching factor of
« Complete tree has height =

disk accesses fdind:

Runtime offind:

3/05/2012

Solution: B-Trees
» specializedV-ary search trees

« Eachnode has (up to) M-1 keys:

— subtree between two keysandy contains

leaves withvalues v such that
X<v<y

« Pick branching factor M
such that each node

takes one full
{ pa‘gel bl OCk} A_ 3< 7 < 12 12< 21 21

of memory
3/05/2012 6

B-Trees

What makes them disk-friendly?

1. Many keysstored in anode
e All brought to memory/cache in one access!

2. Internal nodes contaomly keys;
Only leaf nodes contain keysand actual data

« The tree structure can be loaded into memory
irrespective of data object size

e Data actually resides in disk

3/05/2012 7

B-Tree: Example

B-Tree withM = 4 (# pointersin internal node)
(#dataitemsin L eaf)

andL = 4

[adla2] [|
[30[32[33[3¢] [5060[70]]

Data objects, that I'll ignore in slides

3/05/2012
Note: All leaves at the same depth!

B-Tree Propertie$

— Data is stored at tHeaves

— All leavesare at the same depth and contain betweg
[L/2] andL data items

— Internalnodes store up tel-1 keys
— Internalnodes have betweéM/2]andM children

— Root(special case) has between 2 &hdhildren
(or root could be a leaf)

3/05/2012 fThese are technically*Blrees °

Example, Again

B-Tree withM = 4
andL = 4

[i[2] [] [20[1af29 | [20[25]26] |
[3]5]6]9] 517] [30[32[33[3¢] [5060[70]]

(Only showing keys, but leaves also have data!)
3/05/2012 10

B-trees vs. AVL trees

Suppose we have 100 million items (100,000,000):

« Depth of AVL Tree

¢ Depth of B+ Tree with M =128, = 64

3/05/2012 11

Building a B-Tree

1] (3]
Insert@) Insert(L4)
The empty
B-Tree
M=3L =2

Now, Insert()?

3/05/2012 12

m=st=2 Gplitting the Root
Too many
keys in a leaf!
B
Insert(l) {1 | And create
a new root

3/05/2012

So, split the leaf.

13

M=3L =2

Overflowing leaves

Too many
keys in a leaf!

Insert69) Insert@6)

so,split the leaf

And add
a new child

3/05/2012

Propagating Splits

Insertf)

Add new

Split the leaf, but no space in parent!

child

Create a
new root

65126

So, split the node. ~

Insertion Algorithm

3. If an internal node ends up

1.

Insert the key in its leaf

2. If the leaf ends up with L+1
items,overflow!
— Split the leaf into two nodes:
« original with [(L+1) / 2Titems
+ new one wit (L+1)/ 2 Jitems
— Add the new child to the parent
— If the parent ends up wiftt1
items,over flow!

with M+1 items,over flow!
— Split the node into two nodes:
« original with [(Mr1) / 27items
« new one with (M1) / 2 Jitems
— Add the new child to the parent
— If the parent ends up witi+1
items,over flow!

4. Split an overflowed root in
two and hang the new nodes
under a new root

This makes the tree deepe/r/!

3/05/2012

Insert@9)
Insert(79)

3/05/2012

1. Delete item from leaf

Delete69)

Deletion

2. Update keys of ancestors if necessary

What could go wrong?

(5]] I

3/05/2012

Deletion and Adoption

A leaf has too few keys!

Deletep)

3/05/2012

19

Does Adoption Always Work?

» What if the sibling doesn’t have enough for you to
borrow from?

e.g. you havéL/2]-1 and sibling halsL/2] ?

3/05/2012 20

Deletion and Merging

A leaf has too few keys!

Delete@)

And no sibling with surplus!

So, delete

the leaf

21

But now an internal node
3/05/2012
h4g 166 few subtrees!

w=3L-2Deletion with Propagatio
(More Adoption)

Adopt a
neighbor

3/05/2012 22

Delete()
(adopt a
sibling)

3/05/2012 23

M=3 L .2
ﬁU”mg OUt the ROOt A leaf has too few keys!

And no sibling with surplus!

Delete@6) So, delet
the leaf;
merge
But now theroot A node has too few subtrees

has just one subtree! and no neighbor with surplus!

Delete
the node

24

M=3L =2

Pulling out the Root (continued)

Theroot
has just one subtree!

Simply make
the one child
the new root!

3/05/2012

Deletion Algorithm

. Remove the key from its leaf

. If theleaf ends up with fewer

than['L/ 27items,under flow!

— Adopt data from a sibling;
update the parent

— If adopting won't work, delet
node andner ge with neighbo

— If the parent ends up with
fewer tharfm 27items,

under flow!
3/05/2012 26

Deletion Slide Two

3. If aninternal node ends up with
fewer tharf M 27items,under flow!

— Adopt from a neighbor;
update the parent

— If adoption won't work,
mer ge with neighbor

— If the parent ends up with fewer than
'™ 27items,under flow!
This reduces the
4. If the root ends up with only on /// height of the tree!
child, make the child the new root
of the tree

3/05/2012 27

Thinking about B-Trees

B-Treeinsertion can cause (expensive) splitting
and propagation

B-Treedeletion can cause (cheap) adoption or
(expensive) deletion, merging and propagation
Propagation is rare MandL are large

(Why?)

If M= L = 128, then a B-Tree of height 4 will
store at least 30,000,000 items

3/05/2012 28

Tree Names You Might Encounter

FYI:
— B-Trees withM = 3,L = x are called2-3 trees
« Nodes can have 2 or 3 pointers
— B-Trees withM = 4, L = x are called-3-4 trees
« Nodes can have 2, 3, or 4 pointers

3/05/2012 29

Determining M and L for a B-Tree
1 Page on disk = 1 KByte
Key = 8 bytes, Pointer = 4 bytes
Data = 256 bytes per record (includes key)

