2/22/2012

Graphs:

Shortest Paths
(Chapter 9)

CSE 373
Data Structures and Algorithms

2/22/2012 1

Today’s Outline

¢ Admin:
— Midterm #2 — Friday Feb 24™, topic list has been posted

— HW #5 — Graphs, partners allowed — email Johnny by 11pm
Sat Feb 25, due Thurs March 15t

* Graphs

— Graph Traversals
— Shortest Paths

2/22/2012

Single source shortest paths

« Done: BFS to find the minimum path length from v to u in
O(IEI+(IVI)

« Actually, can find the minimum path length from v to every node
— Still O(JE[+(|V])
— No faster way for a “distinguished” destination in the worst-case

* Now: Weighted graphs

Given a weighted graph and node v,
find the minimum-cost path from v to every node

« As before, asymptotically no harder than for one destination
« Unlike before, BFS will not work

2/22/2012 3

Applications

— Network routing
— Driving directions
— Cheap flight tickets

— Critical paths in project management
(see textbook)

Not as easy
0

1 5
100 ~ 100
100 00 O w7
500

Why BFS won't work: Shortest path may not have the fewest edges
— Annoying when this happens with costs of flights

We will assume there are no negative weights

« Problem is ill-defined if there are negative-cost cycles
* Next algorithm we will learn is wrong if edges can be negative

2/22/2012 5

Edsger Wybe Dijkstra

(1930-2002)

Legendary figure in computer science; was a professor at University of
Texas.
Invented concepts of structured programming, synchronization, and
"semaphores" for controlling computer processes.
Supported teaching programming without computers (pencil and paper)
1972 Turing Award
“computer science is no more about computers than astronomy is about
telescopes”

2/22/2012

2/22/2012

Dijkstra’s Algorithm

The idea: reminiscent of BFS, but adapted to handle weights

A priority queue will prove useful for efficiency (later)

Will grow the set of nodes whose shortest distance has been
computed

Nodes not in the set will have a “best distance so far”

Dijkstra’s Algorithm: Idea

Initially, start node (A in this case) has “cost” 0 and all other nodes
have “cost” 00

At each step:
— Pick closest unknown vertex v
— Add it to the “cloud” of known vertices
— Update “costs” for nodes with edges from v

That's it! (Have to prove it produces correct answers)
2/2012

2/22/2012 7 212 8
The Algorithm Important features
1. Foreachnode v, set v.cost= 00 and v.known = false
2. Set source.cost = 0 « Oncea vertex is marked known, the cost of the shortest path to
)) that node is known
3. While there are unknown nodes in the graph

a) Select the unknown node v with lowest cost
b) Mark v as known
c) Foreach edge (v,u) with weight w,
cl =v.cost+w /I cost of best path through v tou

— As is the path itself

While a vertex is still not known, another shorter path to it might
still be found

€2 = u.cost /I cost of best path to u previously known
if(cl < c2){ /1'if the path through v is better
u.cost=cl
u.path=v //for computing actual paths
}
2/22/2012 9 2/22/2012 10
Example #1 Example #1

known? cost path

I|®|mMmMOlO|m

2/22/2012 11

Q)
1

7 vertex | known? cost path

A 0

??

??

??

??

??

??

I|OMmoOlO|m

??

2/22/2012 12

2/22/2012

Example #1

Example #1

‘ 7 vertex | known? cost path N 7 vertex | known? cost path
A Y 0 A Y 0
B <2 A B <2 A
C A C Y 1 A
D <4 A D <4 A
E ?? E <12 C
F ?? F ??
G ?? G ??
H ?? H ??
2/22/2012 13 2/22/2012 14
Example #1 Example #1
cost path known? cost path
A Y 0 A Y 0
B Y 2 A B Y 2 A
C Y 1 A C Y 1 A
D <4 A D Y 4 A
E <12 C E <12 C
F <4 B F <4 B
G ?? G ??
H ?? H ??
2/22/2012 15 2/22/2012 16
Example #1 Example #1
0 2 0 2
1 1
4 4
7 vertex | known? cost path 7 vertex | known? cost path
A Y 0 A Y 0
B Y 2 A B Y 2 A
C Y 1 A C Y 1 A
D Y 4 A D Y 4 A
E <12 C E <12 C
F Y 4 B F Y 4 B
G ?? G <8 H
H <7 F H Y 7 F

2/22/2012

17

2/22/2012

2/22/2012

Example #1

‘ 7 vertex | known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E <11 G
F Y 4 B
G Y 8 H
H Y 7 F
2/22/2012 19

Example #1

‘ 7 vertex | known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y 8 H
H Y 7 F
2/22/2012 20

Important features

« Once a vertex is marked ‘known’, the cost of the shortest path to
that node is known

— As is the path itself

Interpreting the results

« Now that we're done, how do we get the path from, say, A to E?

vertex | known? cost path
A Y 0
« While a vertex is still not known, another shorter path to it might B Y 2 A
still be found C Y 1 A
D Y 4 A
E Y 1 G
F Y 4 B
G Y 8 H
H Y 7 F
2/22/2012 21 2/22/2012 22
Stopping Short Example #2
+ How would this have worked differently if we were only interested in
the path from A to G?
— Ato E?
vertex | known? cost path vertex | known? cost path
A Y 0 A 0
B Y 2 A B ??
C Y 1 A C ??
D Y 4 A D ??
E Y 1 G E ??
F Y 4 B F ??
G Y 8 H G ??
H Y 7 F
2/22/2012 23 2/22/2012 24

2/22/2012

Example #2

Example #2

vertex | known? cost path vertex | known? cost path
A Y 0 A Y 0
B ?? B <6 D
C A C < A
D < A D Y A
E 2?2 E D
F 2?2 F D
G ?? G < D
2/22/2012 25 2/22/2012 26
Example #2 Example #2
vertex | known? cost path vertex | known? cost path
A Y 0 A Y 0
B <6 D B <3 E
C Y 2 A C Y 2 A
D Y A D Y 1 A
E D E Y 2 D
F C F C
G < D G < D
2/22/2012 27 2/22/2012 28
Example #2 Example #2
vertex | known? cost path vertex | known? cost path
A Y 0 A Y 0
B Y 3 E B Y 3 E
C Y 2 A C Y 2 A
D Y 1 A D Y 1 A
E Y 2 D E Y 2 D
F <4 C F Y 4 C
G < D G <6 D

2/22/2012

2/22/2012

2/22/2012

Example #2

Example #3

vertex | known? cost path

A Y 0

B Y 3 E How will the best-cost-so-far for Y proceed?

C Y 2 A

D Y 1 A Is this expensive?

E Y 2 D

F Y 4 C

G Y 6 D
2/22/2012 31 2/22/2012 32
Example #3 A Greedy Algorithm

How will the best-cost-so-far for Y proceed? 90, 81, 72, 63, 54, ...

Is this expensive? No, each edge is processed only once

2/22/2012 33

« Dijkstra’s algorithm
— For single-source shortest paths in a weighted graph (directed
or undirected) with no negative-weight edges
— An example of a greedy algorithm:

< at each step, irrevocably does what seems best at that
step (once a vertex is in the known set, does not go back
and readjust its decision)

« Locally optimal — does not always mean globally optimal

2/22/2012 34

Where are we?

« Have described Dijkstra’s algorithm

— For single-source shortest paths in a weighted graph (directed
or undirected) with no negative-weight edges

« What should we do after learning an algorithm?
— Prove it is correct
« Not obvious!
« We will sketch the key ideas
— Analyze its efficiency
« Will do better by using a data structure we learned earlier!

2/22/2012 35

Correctness: Intuition
Rough intuition:

All the “known” vertices have the correct shortest path
— True initially: shortest path to start node has cost 0

— If it stays true every time we mark a node “known”, then by
induction this holds and eventually everything is “known”

Key fact we need: When we mark a vertex “known” we won't
discover a shorter path later!

— This holds only because Dijkstra’s algorithm picks the node
with the next shortest path-so-far

— The proof is by contradiction...

2/22/2012 36

2/22/2012

Correctness: The Cloud (Rough Idea)

— Next shortest path from

Q’ inside the known cloud
\\
Better path to '“‘\

v? No!

~ Source

Suppose v is the next node to be marked known (“added to the cloud”)
* The best-known path to v must have only nodes “in the cloud”
— Since we've selected it, and we only know about paths through the cloud to
a node right outside the cloud
* Assume the actual shortest path to v is different
— Itwon't use only cloud nodes, (or we would know about it), so it must use
non-cloud nodes
— Let w be the first non-cloud node on this path.
— The part of the path up to w is already known and must be shorter than the
best-known path to v. So v would not have been picked. Contradiction.
212212012 37

Efficiency, first approach

Use pseudocode to determine asymptotic run-time
— Notice each edge is processed only once

dijkstra(Graph G, Node start) {
for each node: x.cost=infinity, x.known=false
start.cost =0
while(not all nodes are known) {
b = find unknown node with smallest cost
b.known = true
for each edge (b,a) in G
if(la.known)
if(b.cost + weight((b,a)) < a.cost){
a.cost =b.cost + weight((b,a))
a.path =b
}

2/22/2012 38

Efficiency, first approach

Use pseudocode to determine asymptotic run-time
— Notice each edge is processed only once

dijkstra(Graph G, Node start) {

for each node: x.cost=infinity, x.known=false } O(vh
start.cost =0
while(not all nodes are known) {

b = find unknown node with smallest cost o(vP)

b.known = true

for each edge (b,a) in G

if(la.known)
if(b.cost + weight((b,a)) < a.cost){

a.cost = b.cost + weight((b,a)) O(IEl)
a.path =b
} —
: o(v
2/22/2012 39

Improving asymptotic running time

* So far: O(|V]P)

* We had a similar “problem” with topological sort being O(|V|?)
due to each iteration looking for the node to process next

— We solved it with a queue of zero-degree nodes

— But here we need the lowest-cost node and costs can
change as we process edges

« Solution?

2/22/2012 40

Improving (?) asymptotic running time

« So far: O(|V]P)

* We had a similar “problem” with topological sort being O(|V|?)
due to each iteration looking for the node to process next
— We solved it with a queue of zero-degree nodes

— But here we need the lowest-cost node and costs can
change as we process edges

* Solution?
— A priority queue holding all unknown nodes, sorted by cost
— But must support decreaseKey operation

« Must maintain a reference from each node to its position
in the priority queue
« Conceptually simple, but can be a pain to code up

2/22/2012 41

Efficiency, second approach
Use pseudocode to determine asymptotic run-time

dijkstra(Graph G, Node start) {
for each node: x.cost=infinity, x.known=false
start.cost =0
build-heap with all nodes
while(heap is not empty) {
b = deleteMin()
b.known = true
for each edge (b,a) in G
if(la.known)
if(b.cost + weight((b,a)) < a.cost){
decreaseKey(a,“new cost— old cost”)
a.path =b
}

2/22/2012 42

2/22/2012

Efficiency, second approach

Use pseudocode to determine asymptotic run-time

dijkstra(Graph G, Node start) {
for each node: x.cost=infinity, x.known=false
start.cost =0
build-heap with all nodes
while(heap is not empty) {
b = deleteMin()
b.known = true
for each edge (b,a) in G
if(la.known)
if(b.cost + weight((b,a)) < a.cost){
decreaseKey(a,“new cost— old cost”)
a.path =b
}

2/22/2012

o)

]— O(IVllog|VI)

O(|E[log|VI)

O(IVllog|V|+|Elog|V])

43

Dense vs. sparse again

« First approach: O(|V|?)
« Second approach: O(|V|log|V|+|E|log|V])

« So which is better?
— Sparse: O(|V|log|V|+|E]log|V]) (if |[E| > |V], then O(|E|log|V]))
— Dense: O(|V[»)

« But, remember these are worst-case and asymptotic
— Priority queue might have slightly worse constant factors

— On the other hand, for “normal graphs”, we might call
decreaseKey rarely (or not percolate far), making |E|log|V|
more like |E|

2/22/2012 44

